

CHAPTER 3

METHODOLOGY

form Departure and Arriving of Busses Using Bluetooth project will be

divided into 2 main parts, server and client. The server part will run in a PC and the

client will apply in the mobile phones that support the Java environment. The design

and development process will be done using Netbeans 5.5 IDE. NetBeans 5.5 is

capable to compile and run the Java programming program and capable in developing

d mobile application.

To simply install the Java environment in the workstation, bundle software

from NetBeans is used. This installer comes with Netbeans 5.5 installer and Java

Development Kit Update 6.0. So, the process to set up the Java environment becomes

more simple and fast.

ned

by volunteer.

3.0 Introduction

In

Graphical User Interface for PC an

The installer for this software can be downloads from the NetBeans Official

Web Site [3]. To develop a Bluetooth program in Java, BlueCove API is used.

BlueCove is a JSR-82 implementation on Java 2 Standard Edition (J2SE) that

currently interfaces with the Microsoft Bluetooth stack found in windows XP SP2 or

newer. This API is originally developed by Intel Research and currently maintai

3.0.1 Project Flow Diagram

Figure 3.1: Overall flow of Bluetooth Bus Info

Figure 3.1 show the overall flow for Bluetooth Bus Info system. The input for

this system is the busses with Bluetooth device. First of all, the details data about the

journey of the busses is already save in the database. When the system is running, the

Bluetooth device scanner will continuously scan the nearby area to detect the active

Bluetooth devices. If the Bluetooth devices are detected, the system will compare the

Bluetooth Address from the devices with the Bluetooth address save in database.

If the detected Bluetooth Address is match with Bluetooth Address in the

database, the system will show the details data in the PC side GUI. From the Figure

3.1, the Bluetooth PC is the centre point for the system. This PC consists the software

to scan the nearby Bluetooth devices and the database server.

The output for this system will be display in the GUI and mobile phone

display. Phone side output only available when the user on phone side request the data

from the PC side software.

3.0.2 Overall flow of Bluetooth Bus Info

Figure 3.2: Flow Chart for Bluetooth Bus Info System

Figure 3.2 show the overall flow for Bluetooth Bus Info. BA is stand for

Bluetooth Address. This figure also shows the flow for PC side program. When the

system is started, the Bluetooth device scanner will automatically scan the nearby area

to search for Bluetooth devices around the bus station. If devices are detected, the

system will proceed to next step; compare the Bluetooth Address with Bluetooth

Address in the database. If no devices is detected, the system will continuously scan

e area until new devices is detected.

If the Bluetooth devices address is matched with Bluetooth devices in the

atabase, the program will collect the journey details from the database and show it

 Bluetooth address is not match with database data, the system

 PC side program for the details data, the

arch the data and sent it to the phone side. The data will be display on

the phone L D

3.1 Dev p

The Blu

scan the nearby Bluetooth devices and display the Bluetooth address, current time and

date in the GUI. Bluetooth Device scanner also acts as the server program to receive

the request m

make the interf oft Bluetooth Protocol Stack.

To develop e

API. The classes are javax.bluetooth.LocalDevice, javax.bluetooth.RemoteDevice,

and javax.bluetooth.DeviceClass. These classes provided the device management

capabilities that are part of the Generic Access Profile (GAP). To get the current time

 is used. The source code for Bluetooth Device scanner can

be view in Appendix I.

th

d

on the GUI display. If

will ignore the address and waiting for another data query. Data query is the method

to search data from the database.

If the phone side is request the

program will se

C display.

elo the Bluetooth Device Scanner for PC application

etooth device scanner is a backbone to this project. This program will

fro the phone. This program will use the BlueCove API as the bridge to

ace to Micros

 th Bluetooth Device Scanner we need to use the classes in the BlueCove

and date, java.util class

3.1.1 Loc D

The lo

This class provides methods to manage and retrieve local device and information

i device class, and discovery agent. Some of the

methods provided by this class include:

• ss()– retrieves the Bluetooth

address of the local device. A Bluetooth address is represented as

sents a 12 characters long hexadecimal

value.

• boolean setDiscoverable(int mode) – sets the discoverable mode of the

device.

he remote local Bluetooth device is represented by

javax.bluetooth.RemoteDevice. This class provides methods to retrieve the

RemoteDevice object associated with a Bluetooth connection, methods to learn the

 security-related methods. Some of the

ethods provided by this class include:

. A Bluetooth address is represented as

java.lang.String that represents a 12 characters long hexadecimal

value.

al evice

cal Bluetooth device is represented by javax.bluetooth.LocalDevice.

about t such as its Bluetooth address,

• static LocalDevice getLocalDevice() – static method to retrieve the

localDevice object that represents the local Bluetooth device.

java.lang.String getBluetoothAddre

java.lang.String that repre

• DiscoveryAgent getDiscoveryAgent()– returns the discovery agent for

this device.

3.1.2 Remote Device

T

address and name of the remote device, and

m

• java.lang.String getBluetoothAddress() – retrieves the Bluetooth

address of the remote device

3.1.3 et Current Time and Date

 et current time is a method to get the local time. This class is from java.util.

The use of this class in this program is to get the time when a Bluetooth device is

, this class also provide a method to get the current local date.

he

computer.

 allows for interaction with a computer or

ther media formats which employ graphical images, widgets, along with text to

represent the information and actions available to a user. The actions are usually

performed through direct manipulation of the graphical elements.

3.2.1 etting Started With NetBeans 5.0

o install the NetBeans 5.0 in the workstation, reader can get the installer

from N

G

G

detected. Besides time

3.2 Graphical User Interface (GUI)

The graphical user interface is a computer interface that uses graphic icons and

controls in addition to text. The user of the computer utilizes a pointing device, like a

mouse, to manipulate these icons and controls. This is considerably different from the

command line interface (CLI) in which the user types a series of text commands to t

A graphical user interface (GUI)

o

G

T

etBeans website [4]. Follow the instruction to install the software. For tutorial

or help, please refer to this website [5]. To develop an application program for Java in

NetBeans IDE, please refer to Appendix II.

3.2.2 PC side GUI

he phone.

eparture Database will conduct the data for the departure information. In this tab,

the e atabase. The

sam arture and Arriving tab

wil o e.

3.2

To make the system a user friendly program, a GUI for this system will be

develop. GUI for the PC side will be divided into 4 parts. Scan tab will be the place to

start the scanning process and start the server for receives connection from t

D

us r will have an access to edit, add and delete data to the departure d

e design will be found in the Arriving Database tab. Dep

l sh w the detail about the busses information based on the data in the databas

.3 Bluetooth Device Scanner GUI

Figure 3.3: Sequence Diagram for Bluetooth Device Scanner GUI

Figure 3.2 shows the sequent diagram in the Bluetooth scanner GUI. This

sequence happen when the Start button is pressed. When the button is pressed, the

GUI program will call the Bluetooth device scanner program. The scanner program

will run and the server will started and wait for client (phone) request. The result from

the scanning process will be send back to the GUI and display it in the text area.

3.2.4 Database

For storing details about busses data likes the destinations, time of departure

or arriving in this project, MySql database is choose. To monitoring the data, a GUI

for database is created. a database needs to set

p first. Below is the step to install MySql database in window workstation.

• Download mysql-5.0.27-win32 installer from MySql website [6].

• Follow the instruction and click finish when the installation is complete.

• Find the MySql Command Line Client.

• Reader will be pr . The reader can set

vironment is already set up in the workstation.

.

, we need to connect the database with the

, the step to connect the database with

After MySql is connected to NetBeans 5.5 IDE, a table to store the data must

n display the data to the GUI. This is the simple way to

 all the data from database. Step to create the table in the database also

ndix III.

Before creating the GUI for database,

u

• Extract the .zip file and double click setupmysql.EXE

ompt to fill the password to the database

the password in the installation process. Enter the password and press enter.

• The MySql en

3.2.4.1 Connecting the IDE with MySql database

To build the GUI for the database

IDE. Because of the process is a little bit tricky

the IDE will be explained in Appendix III.

be created before we ca

display

available in Appe

3.2.4.2 Build the database GUI

Database GUI will use same frame but in the different panel. Create the new

 GUI. The GUI for database will have 3 panels

sent add, edit and delete data to database.

panel and start building the database

and 1 table. Each panel will repre

Tab to edit,
add and

delete data

Table to
display data

from
database

Figure 3.4: Sample of Database GUI

abase

o add data to database using GUI should be done by choose the Add tab.

3.2.4.2.1 Add data to dat

T

Figure 3.5: Add Data to Database GUI

The "AddActionPerformed" method is created in the source file. Here is the code to

perform this action.

private void jButton4ActionPerformed(java.awt.event.ActionEvent evt) {

 String dbluetoothID=jTextField29.getText();

 String company=jTextField4.getText();

 String regno=jTextField5.getText();

 String destination=jTextField6.getText();

 String timedepart=jTextField7.getText();

 String platform=jTextField8.getText();

 String insertStr="";

 try{

 mpany, regno, destination,

tim) values("

 ate(insertStr);

 if (jTextField29.getText()== "")

 getContentPane().removeAll();

 }

 insertStr="insert into depart (dbluetoothID, co

edepart, platform

 +quotate(dbluetoothID)+","

 +quotate(company)+","

 +quotate(regno)+","

 +quotate(destination)+","

 +quotate(timedepart)+","

 +quotate(platform)

 +")";

 int done=stmt.executeUpd

 initComponents();

 }

 catch(Exception e){

 e.printStackTrace();

 }

3.2 om database

To should be done in edit tab.

.4.2.2 Edit data fr

edit data from the database

Figure 3.6: Edit Data from Database GUI

e code for the Update button will be shown below

ionPerformed(java.awt.event.ActionEvent evt) {

 String dbluetoothID=jTextField9.getText();

extField27.getText();

Field28.getText();

 insertStr="";

+

uotate(destination)+

Th

private void jButton3Act

 String company=jTextField10.getText();

 String regno=jTextField25.getText();

 String destination=jTextField26.getText();

 String timedepart=jT

 String platform=jText

 String

 try{

 insertStr="update depart set "

 "company="+quotate(company)+

 ",regno=" +quotate(regno)+

 ",destination="+q

 ",timedepart="+quotate(timedepart)+

toothID)+";";

ertStr);

 getContentPane().removeAll();

initComponents();

tch(Exception e){

Trace();

 }

.2.4.2.3 Delete data from database

o delete the data from the database will be done in delete tab.

 ",platform="+quotate(platform)+

 "where dbluetoothID ="+quotate(dblue

 int done=stmt.executeUpdate(ins

 }

 ca

 e.printStack

 }

3

T

Figure 3.7: GUI for Delete Data from Database

The delete e for

this action is shown below

 action will be performed when the delete button is pressed. The cod

private void jButton7ActionPerformed(java.awt.event.ActionEvent evt) {

 String dbluetoothID=jTextField11.getText();

 String regno=jTextField12.getText();

 String insertStr="";

 int done=stmt.executeUpdate(insertStr);

 int done1=stmt.executeUpdate(insertStr1);

 getContentPane().removeAll();

 initCompon

 }

 e.printStackTrace();

 String insertStr1="";

 try{

 insertStr="delete from depart where dbluetoothID ="

 +quotate(dbluetoothID)

 +";";

 insertStr1="delete from depart where regno ="

 +quotate(regno)

 +";";

ents();

 catch(Exception e){

 }

 }

For arrive database the same method is used. For the full source code can be view

in the Appendix II.

3.2.4.2.3 Database Table

The usage of the database table is to show the data from the database. This

table is link to add, edit and delete panel. If a data is added the data in the table also

change. The Figure 3.14 show the table when data from database in called.

Figure 3.8: Table show the data from Departure table from Database

Information panel is a place to inform the passenger about their journey

formation. In this panel, the data from database is called and will be send to client

nd display it on the hand phone screen. This panel will get the Bluetooth address

 the database.

To set up the table to receive the data from database, a program to connect directly

to database is created. The full source code for this program can be view in Appendix

II.

3.2.4.3 Information Panel

in

a

from the scanner and automatically find the data from

The source code for this panel can be view in Appendix II. Below is a

screenshot of the information panel. The arriving and departure information panel

share the same design and function, but will be run and display in the different screen.

Figure 3.9: Departure Information Panel

3.3 Bluetooth client program

ll the process above is a Bluetooth bus info server side program. The server

side provide the client the information to be displayed. The client will request the

s. The server will send them a set of

formation to the client using Bluetooth connection. In this section the process to

build the client side will be explain.

3.3.1 troduction to J2ME application

Java for small electronic device that support the Java

environment. Java™ Platform, Micro Edition (Java ME) is the most ubiquitous

appl

environment for applications running on a broad range of other embedded devices,

such as mobile phones, PDAs, TV set-top boxes, and printers. The Java ME platform

includes flexible user interfaces, a robust security model, a broad range of built-in

network protocols, and extensive support for networked and offline applications that

ications based on Java ME software are

The Java ME platform is deployed on billions of devices, supported by leading

tool vendors, and used by companies worldwide. In short, it is the platform of choice

for today's consumer and embedded devices.

A

server about the information of the busse

in

In

 Java Micro Edition is

ication platform for mobile devices across the globe. It provides a robust, flexible

can be downloaded dynamically. Appl

portable across a wide range of devices.

fo is used. The Sun Wireless Too ols for

To build a wireless application on the hand phone, Sun Wireless Toolkit

rmerly knows as J2ME lkit is a set of to

run on devices compliant with the Java Technology for

Indu TWI, JSR 185 n and the Mobile Service

Architecture (MSA, JSR 248) specification. It consists of build tools, utilities, and a

device emulator. For this project, the application on the hand phone will used the Java

for CLDC and MIDP 2.0 that fit with the hand phone’s hardware capabilities. For

more detail about].

3.3.2 Build The Application on mobile phone

To build the application for phone, we need to download the Wireless Toolkit

 Sun Microsystems has built a wireless

olkit that supports the NetBeans software. That means the developer can use the

NetBea

creating Java applications that

the Wireless stry (J) specificatio

 the CLDC and MIDP 2.0, please refer to this site [7

CLDC from Sun Microsystems site. The

to

ns software to build the application for the phone. To NetBeans, the Wireless

Toolkit CLDC is known as Mobility Packed Extension 5.5. This extension can be

downloaded from Sun Microsystems and NetBeans site [8]. Source code for phone

side program can be view in Appendix IV.

3.3.2.1 Flow Chart client part (on phone)

t of client (phone) program.

Start the client part

program. Establish the
ith server.

Figure 3.10 Flow char

connection w

Choose the data to
receive from server.

Success

Fill the empty field
and send to server

Fill the empty field
and send to server

Success

Receive Depart Data
from server

Receive Arrive Data
from server

End End

Success

No

Yes

Yes Yes

No No

3.3.2.2 Program to connect with server.

nfo Client is passed the server's service record, which it uses to

 connection is mapped to an OutputStream

d InputStream for sending and receiving messages. The opening of the connection

e Connector.open() may block for a long period, and that

ouldn't affect the GUI. Step to develop MIDP in NetBeans can be view in

lobals
Record;
rm;

rivate StreamConnection conn; // for the server
rivate

private

// get a URL for the service
String servURL = servRecord.getConnectionURL(

HENTICATE_NOENCRYPT, false);
 (servURL != null) {

y {
 connect to the server, and extract IO streams

) Connector.open(servURL);
t = conn.openOutputStream();

putStream();

.setEnable(true); // communication allowed
i.e. the connection is open

t.println(ex);
Status("Connection Failed");

ervice Found");

Bluetooth Bus I

create a RFCOMM stream connection. The

an

is carried out in a thread sinc

sh

Appendix V.

// g
private ServiceRecord serv

rivate ClientForm clientFop
p
p InputStream in; // stream from server

 OutputStream out; // stream to server
private boolean isClosed = true;
// is the connection to the server closed?
public void run()
{

ServiceRecord.NOAUT
if
clientForm.setStatus("Found Echo Server URL");
tr
//
conn = (StreamConnection
ou
in = conn.openIn
clientForm.setStatus("Connected to Echo Server");
clientForm
isClosed = false; //

{ System.ou
clientForm.set
}
}
else
clientForm.setStatus("No S
} // end of run()

The first argument of the call to Se iceRecord.getConnectionURL() specifies

the level of security for the connection. For this project, level of security is set for no

security. The second argument relates to th aster-slave communications protocol at

the Bluetooth level, and should usually be set to false.

Once the connection URL has been extracted from the service record, a stream

connection is obtained with Connector.open(), and an InputStream and OutputStream

are layered on top of it. I use InputStream and OutputStream for the same reason as in

the server additional message passing functionality is easily implemented with read()

and write().

3.3.2.3 Request data from server

A message is sent out when s echoMessage(). The method
waits for an response then returns it to ClientForm.

public String echoMessage(String msg)
{
if (isClosed) {
disableClient("No Connection to Server");
return null;
}
if ((msg == null) || (msg.trim().equals("")))
return "Empty input message";

sg)) { // message sent ok
tring response = readData(); // wait for response

lient("Connection Lost");
eturn null;

 // end of echoMessage()

rv

e m

ClientForm call

else {
if (sendMessage(m
S
if (response == null) {
disableClient("Server Terminated Link");
return null;
}
else // there was a response
return response;
}
else { // unable to send message
disableC
r
}
}
}

If there's a problem, the client is notified using disableClient(), and null is

3.3.2.4 Closing

$" message to the server, then closes the connection.

blic void closeDown()

/ tell server that client is leaving

Exception e)
.out.println(e); }

returned. The readData() and sendMessage() methods employed in echoMessage() are

the same as the ones used in ThreadedEchoHandler.

 Down

closeDown() sends a "bye$

pu
{
if (!isClosed) {
sendMessage("bye$$"); /
try {
if (conn != null) {
in.close();
out.close();
conn.close();
}
}
catch (IO
{ System
isClosed = true;
}
} // end of closeDown();

IMPLEMENTATION ISSUE

 This chapter will discuss about the implementation issue from the Java

Bluetooth API classes ed to develop Bluetooth device

scanner and connectio

program is Java Utilitie lities provides the method to get the date and time to

e imp ent e classes will be discuss

elow.

.1 Using the Local Device methods.

 Local Device c e Bluetooth

ata fr evice will be the built in Bluetooth

 at how how to implement the

vice Scanner.

etooth.*;

:

:

 try

 LocalDevice localDevice = LocalDevice.getLocalDevice();

CHAPTER 4

4.0 Introduction

. Bluetooth API will be us

n between PC with mobile phone. Another API used in this

s. Java Uti

b lem ing to this software. The details about thes

b

4

lass is the method to extract all the data about th

d om the local host. In this program, local d

device that tach to the workstation. Program below s

local device class to the Bluetooth De

import javax.blu

{

 // Get the local device

// Get the DiscoveryAgent object for device and service discovery

getDiscoveryAgent();

tart the device inquiry

 }

 catch

 {System.out.println(e);}

In the Java Bluetooth API, remote device is the Bluetooth devices that try to

make connect th

Address, Bluetooth friendly n h device class.

ublic void deviceDiscovered(RemoteDevice btDevice, DeviceClass cod) {

BluetoothAddress());

ut.println(btDevice.getBluetoothAddress());

.3 Using the java.util methods to get local time

Java Utilities class can be used to get the local time and date from the

o get the local time and date is show below

import

ids = TimeZone.getAvailableIDs(60 * 60 * 1000);

 if (ids.length != 0)

 discoveryAgent = localDevice.

// S

 discoveryAgent.startInquiry(DiscoveryAgent.GIAC, this);

 (Exception e)

4.2 Using the Remote Device methods.

ion with local device. This class will extract data likes Bluetoo

ame and Bluetoot

p

String bt_address = new String(btDevice.get

 System.o

4

workstation. The method t

java.util.*;

private String GetCurrentTime()

 {

 String[]

 {

SimpleTimeZone gmt = new SimpleTimeZone(60 * 60 *

eZone("Asia/Kuala_Lu

l.Date today = new java.util.Date();

 calendar.setTime(today);

 String patternDate = new String("EEE-MMM-dd");

:ss");

eFormat formatter = new

impleDateFormat(patternTime, Locale.ROOT);

er.setCalendar(calendar);

 return (String)(formatter.format(today));

 java.util.Date today = new java.util.Date();

1000, ids[0]);

Calendar calendar = new

GregorianCalendar(TimeZone.getTim

mpur"));

 java.uti

 String patternTime = new String("H:mm

SimpleDat

S

 formatt

 }

 return null;

 }

4.4 Using the java.util to get local date

import java.util.*;

private String GetCurrentDate()

{

String[] ids = TimeZone.getAvailableIDs(60 * 60 * 1000);

if (ids.length != 0)

{

SimpleTimeZone gmt = new SimpleTimeZone(60 * 60 * 1000, ids[0]);

Calendar calendar = new GregorianCalendar(gmt);

 calendar.setTime(today);

String patternDate = new String("dd.MM.yyyy");

SimpleDateFormat formatter = new SimpleDateFormat(patternDate,

Locale.ROOT);

 formatter.setCalendar(calendar);

 return (String)(formatter.format(today));

 }

turn null;

}

r is a threaded RFCOMM-based echo service,

ID (a unique Bluetooth ID) and service name ("echoserver"). The

esn't cause the toplevel

 does connect, a ThreadedEchoHandler thread is spawned

m;
ndlers = new Vector();

's device discoverable
Device.getLocalDevice();
overyAgent.GIAC);

atch (B
System

"btspp://localhost:" + UUID_STRING +
";name " + SERVICE_NAME);

re

4.5 Server development

Bluetooth Bus Info Serve

identified by a UU

waiting for client connections is done in a thread so that it do

GUI to block. When a client

to deal with it.

public EchoServer()
{

is.ecm = ecth
ha
try { // make the server
LocalDevice local = Local

iscoverable(Disclocal.setD
 }

c luetoothStateException e) {
.out.println(e);

return;
}
/* Create a RFCOMM connection notifier for the server, with
the given UUID and name. This also creates a service
record. */
try {
server = (StreamConnectionNotifier) Connector.open(

=

}
catch (IOException e) {
System ut.println(e);

} // end

e by a client:

ce local = LocalDevice.getLocalDevice();
scoveryAgent.GIAC);

overyAgent.GIAC (General/Unlimited Inquiry Access Code)

emote devices (all the clients) will be able to find the device.

's also a DiscoveryAgent.LIAC constant which limits the device's visibility.The

 server requires a suitably formatted

ostname>:<UUID>;<parameters>

The UUID field is a unique 128-bit identifier representing the service; I utilize

ing (each hex digit uses 4 bits). The URL's parameters are

<name> values are

e (used here), and security parameters such as

authent

f (id, value) attributes. It can be accessed by calling

LocalDevice.getRecord(): ServiceRecord record = local.getRecord(server); The

ServiceRecord class offers get/set methods for accessing and changing a record's

attributes.

.o
return;
}

 of EchoServer()

The server's device must be discoverabl

LocalDevi
local.setDiscoverable(Di

The Disc

constant means that all r

There

RFCOMM stream connection offered by the

URL. The basic format is: btspp://<h

a 32 digit hexadecimal str

"<name>=<value>" pairs, separated by semicolons. Typical

"name" for the service nam

icate", "authorize", and "encrypt". In WTK 2.2., the value of the "name" string

must be in lowercase or a client won't recognize the service name at discovery time.

The other main URL type is for L2CAP connections, where messages are sent

as packets, in a similar style to UDP datagram. The creation of the

StreamConnectionNotifier instance, server, by the Connector.open() call also

generates an implicit service record. The record is a description of the Bluetooth

service as a set o

4.6 Waiting for a Client

EchoServer waits for client connections in a separate thread (EchoServer

o that the enclosing GUI isn't blocked.

lse;

nnections, creating a handler for each one

ion conn = server.acceptAndOpen();
hand = new ThreadedEchoHandler(conn, ecm);
and);

nd.start();

 // run()

 carries out device and service discovery it contacts

the SDDBs of the devices that it's investigating. When a client connection is made,

acceptAndOpen() returns a MIDP StreamConnection object, which is passed to a

tance so it can deal with the client communication.

reates input and output streams, and

arts processing the client's messages.

 in;

implementsThread) s

// global
private boolean isRunning = fa
public void run()
// Wait for client co
{
isRunning = true;
try {
while (isRunning) {
StreamConnect
ThreadedEchoHandler

ndlers.addElement(hha
ha
}
}
catch (IOException e)
 System.out.println(e); } {

}

The call to acceptAndOpen() makes the server block until a client connection

arrives, and also adds the server's service record to the device's Service Discovery

Database (SDDB). When a client

ThreadedEchoHandler ins

4.7 Connecting to the Client

ThreadedEchoHandler's run() method c

st

// globals

e InputStreamprivat
private OutputStream out;

() public void run
{

nt(); / ecm.incrCou
try {

// Get I/O streams from the stream connection
ream();

n.openOutputStream();

intln(e); }
 the top-level count

n()

InputStream and OutputStream are extracted from the StreamConnection

tance, and used in processClient(). The use of run() means that any I/O blocking

thread from the server and its GUI. It's possible to map a

 to the StreamConnection instance, so that

sic Java data types (integers, floats, doubles, strings) can be read and written. I've

eir byte-based read() and write()

ethods can be easily utilized as 'building blocks' for implementing different forms of

messag

4.8 Talking to a Client

od waits for a message to arrive from the client, converts

 to uppercase, and sends it back. If the message is "bye$$", then the client wants to

close th

private void processClient()

unning = true;
 line;

ll)
 false;

e { // there was some input
e$$"))

m.showMessage(clientName + ": " + line);
how in the GUI

tring upper = line.trim().toUpperCase();

 (isRunning)

in = conn.openInputSt
out = con
processClient();
}
catch(Exception e)
{ System.out.pr
ecm.decrCount(); // remove this handler from
} // end of ru

An

ins

will be in a separate

DataInputStream and DataOutputStream

ba

used InputStream and OutputStream because th

m

e processing.

The processClient() meth

it

e link.

{
isR
String
while (isRunning) {
if((line = readData()) == nu
isRunning =
els
if (line.trim().equals("by
isRunning = false;
else {
ec
// s
S

if

sendMessage(upper);

ystem.out.println("Handler finished");
 // end of processClient()

The messy details of reading a message are hidden inside readData(), which

ither returns the message as a string, or null if there's been a problem. A message is

ansmitted with sendMessage().

Wh

ingle

yte, which puts an upper limit on the message's length of 255 characters. Since a

ith its length, readData() can use that value to constrain the

mber of bytes it reads from the input stream.

e String readData()

= null;

d(); // get the message length
(len <= 0) {
stem.out.println("Message Length Error");

ta = new byte[len];
n = 0;

ta.length) {
data, len, data.length - len);

if (ch == -1) {
System.out.println("Message Read Error")
return null;
}
len += ch;
}
}
catch (IOException e)
{ System.out.println("readData(): " + e);
return null;

}
}
}
S
}

e

tr

4.9 Reading a Message

en a client sends a message to the handler ("hello"), it is actually sent as a

stream of bytes prefixed with its length ("5hello"). The number is encoded in a s

b

message always begins w

nu

privat
{
byte[] data
try {
int len = in.rea
if
Sy
return null;
}
da
le
// read the message, perhaps requiring several read() calls
while (len != da
int ch = in.read(

;

}
return new String(data); // convert byte[] to String
} // end of readData()

InputStream.read() is called repeatedly until the necessary number of bytes

have been obtained. The bytes are converted into a String, and returned; the message

length is discarded.

4.10 Sending a Message

sendMessage() adds the message's ngth to the front of a message, and it is

sent out as a sequence of bytes:

private boolean sendMessage(String
{
try {
out.write(msg.length());
out.write(msg.getBytes());
return true;
}
catch (Exception e)

ln("sendMessage(): " + e);

}

 le

 msg)

{ System.out.print
return false;
}

4.11 Closing Down the Handler

The server terminates the handler by calling its closeDown() method. The

input and output streams are closed first, then the underlying StreamConnection.

public void closeDown()
{
System.out.println("Close down echo handler");
isRunning = false;
try {
if (conn != null) {
in.close();
out.close();
conn.close();
}
}
catch (IOException e)
{ System
}

Running is set to false, which will cause the I/O loop in processClient() to finish.

.out.println(e); }

is

