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Kesan ke Atas Fluks dan Kehilangan Kuasa di Sudut Tepi dan 
Penyambungan T di Dalam Teras Alatubah 1000 kVA  

 
ABSTRAK 

Penyelidikan ini melibatkan kerja pengujian dan penilaian  keatas teras alatubah 
1000 kVA menggunakan bahan GO yang dicampurkan dengan 3% silikon. 
Pengujian dilakukan keatas tiga model teras alatubah dengan rekabentuk 45° 
bentuk V di penyambung T dengan tindanan 3mm, 45° bentuk V di penyambung 
T dengan tindanan dan 90° penyambungan T dengan tindanan 10 mm. Semua 
teras alatubah menggunakan penyambungan sudut 45°. Pengukuran agihan fluks 
menggunakan teknik memasang siri lilitan mencari fluks pada permukaan lapisan 
teras. Pengukuran meliputi variasi secara besaran, arah komponen asas dan 
harmonik fluks mengikuti arah mudah dan keras bersama dengan komponen fluks 
arah normal. Pengukuran secara thermometrik dengan cara pengambilan variasi 
suhu menaik di gunakan untuk mendapatkan nilai kehilangan pada teras tanpa 
beban. Teras 45° bentuk V penyambungan T dengan tindanan 3mm menunjukkan 
kehilangan kuasa yang paling rendah jika dibandingkan dengan 2 teras model 
yang lain pada nilai 0.845 W/kg semasa nilai induksi 1.5T 50Hz. Nisbah 
perbezaan kehilangan kuasa diantara 45° bentuk V di penyambung T dengan 
tindanan 3mm dengan teras tindanan 5mm dan 90° penyambungan T tindanan 
10mm adalah 1.3% dan 5.79%. Faktor binaan  teras untuk untuk tindanan 3mm, 
5mm dan 10mm adalah pada nilai 1.11,1.15 and 1.185. Didapati kehilangan kuasa 
paling tinggi berlaku dilokasi yang mengalami bacaan fluks yang tinggi. Teras T 
dengan penyambungan dan 90° mempunyai nilai fluks harmonik ketiga yang 
paling tinggi. Fluks pusaran didapati berlaku di sudut tepi teras tetapi lebih ketara 
kehadirannya di bahagian penyambungan T teras. Fluks pusaran berlaku dengan 
nilai fluks keras yang tinggi sekali didalam teras dan 90° penyambungan T 
mengeluarkan kehilangan kuasa yang paling tinggi pada 0.894W/kg. Kehilangan 
kuasa yang banyak didapati terletak dibahagian penyambungan tengah teras pada 
kedua belah bahagian sudut. Perpindahan fluks diantara lapisan teras adalah satu 
proses yang komplex dimana fluks asas dan normal bergerak dalam masa yang 
sama. Rekabentuk geometri teras dan jarak tindanan adalah faktor utama untuk 
mempengaruhi perjalanan fluks secara unifom yang boleh mengurangkan 
kehilangan kuasa teras. Hasil penyelidikan ini telah menunjukkan bahawa teras 
45° bentuk V di penyambung T dengan tindanan 3mm telah mengeluarkan 
kehilangan kuasa yang paling rendah dan didapati paling efisien. Sekiranya teras 
ini digunakan didalam system agihan TNB, dijangkakan penjimatan yang boleh 
dicapai adalah sebanyak RM69.9 juta setahun. 
 
 
 
 
 
 
 
 
 
	
  

 

 

 

 

 

 

 

 

 

 

 

©
 Th
is 
ite
m 
is 
pr
ot
ec
te
d b
y o
rig
ina
l c
op
yri
gh
t 



	
   ii	
  

The Effect in Corner Joint and T Joint on Localized Flux and Loss 
Distribution in 1000 kVA Transformer Core  

 
ABSTRACT 

The work involved in this thesis relates to the measurement and evaluation on 
localized flux and losses distribution in 1000 kVA three phase transformer core 
using 3% silicon doped Grain Oriented (GO) material. The experiment was 
carried out on three (3) type of transformer core models namely the 45° V notch T 
joint with 3mm overlap distance, 45° V notch T joint with 5mm overlap distance 
and 90° butt lap T joint design with 10 mm overlap distance. Measurement work 
dealt with variation of the magnitude and directional of the fundamental 
components as well as the harmonic components. Power loss measurement was 
conducted using three phase no load loss method. A few array of search coils 
made up of orthogonal, single turn and normal search coils were used to detect the 
in-plane and normal flux. Thermometric method adopting variation of temperature 
rise was selected to capture the power loss. The V notch T joint 3mm overlap 
design had shown the lowest power loss at 0.845 W/kg at 1.5T 50Hz compared to 
the V notch T joint 5mm overlap and butt lap 10mm design with difference of 
1.3% and 5.79% respectively. Building factor of the V notch 3mm proved to be 
the lowest compared to the other two design which is at 1.11,1.15 and 1.185. It 
was noticed highest flux values were concentrated in the inner overlap area of the 
corner joint. Highest losses are spotted at the same location where highest in-
plane flux was presented. The third harmonic flux are highest in the butt lap T 
joint area. Rotational flux and losses were also detected in corner joint and very 
significant existence in the T joint area and butt lap design had produced the 
highest core loss at 0.894 W/kg. Highest core loss is located in the T joint area 
near both side of the inner corner of the center limb. The flux transfer works 
between lamination in a complex manner in which a combination of in-plane and 
normal flux move simultaneously within the laminations. Core geometry design 
and overlap distance is believed to be the critical factors that can influence the 
flux flow uniformity which ultimately can reduce power loss in the core. All in all 
V notch T joint 3mm core design is found to be the most efficient and with 
optimum performance.  It is estimated that a saving of RM69.9 million per year 
can be achieved if the V notch T joint 3mm core design is utilized in TNB 
distribution network system.    
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