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 The ease and accuracy of executing the multiplication and division operations by 
using either fixed-point addition or subtraction is what makes the logarithmic 
number system an attractive option. However, its main drawback is the complexity 
of performing addition and subtraction operations. In this paper, an analysis is 
carried out to compare the current state-of-the-art logarithmic number system and 
floating-point. The results predominantly show that the logarithmic number system 
offers better speed, accuracy and power-efficiency than floating-point. A new 
proposal for logarithmic addition and subtraction using a co-transformation method 
is presented, with the aim of improving its performance further. 
 
 

INTRODUCTION 
 
 Digital signal processing (DSP) is a vital element for many electronic applications such as multimedia, 
digital filtering and household appliances. Most of the DSP algorithms need to be computed in real-time and 
require a wide dynamic range of numbers. The implementation of fixed point (FXP) DSP has a major limitation 
because of restricted accuracy which is the result of finite word-length effects. Floating point (FLP) DSP 
therefore has become an alternative to overcome this precision restriction in FXP architectures. However, FLP is 
not the only solution. Lately, many DSP researchers have been involved in proposing an efficient processor 
based on the logarithmic number system (LNS) which can improve the speed and accuracy of DSP architectures 
[1-6]. 
 LNS provides major advantages over FXP and FLP in terms of speed and accuracy when it comes to 
computing multiplication and division operations. This is because of the similarity of their architectures with 
FXP addition and subtraction to perform the functions as shown in equation (1) and (2). The main obstacle 
within the LNS is executing addition and subtraction, due to the complexity of their architectures as described in 
equation (3) and (4).  
 
log2 (x × y)  = i + j           (1) 
 
log2 (x ÷ y)  = i – j                                   (2) 
 
log2 (x + y)  = i + log2 (1 + 2 j-i)          (3) 
 
log2 (x - y)   = i + log2 (1 - 2 j-i)          (4) 
 
where; 
 
i = log2 x ; j = log2 y 
 
 Several publications have proposed techniques to improve this trade-off, and as a result, the LNS able to 
operate at better performance than FXP or FLP [1,7]. Although the speed and accuracy of the LNS have been 
intensively discussed, less work has been done in considering the impact of LNS on power dissipation, and 
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specifically power-efficiency. An attempt by Paliouras and Stouraitis [15] has shown that the adoption of LNS 
can significantly reduce total power dissipation by reducing the bit precision. However, no previously published 
papers have critically explored the effect of power consumption in terms of power-efficiency in 32-bit word-
lengths. 
 Given this trade-off, the aim of this work is to perform an analysis between 32-bit FLP and LNS in terms of 
speed, area, power consumption, power-efficiency and accuracy of addition, subtraction and multiplication 
operations based on an ASIC implementation. The results will then be used to propose a new LNS architecture 
which can significantly improve its performance.  
 The paper is organised into three major parts. In Section 2, a brief description of previously proposed LNS 
architectures is presented. A benchmark analysis between FLP [8] and LNS [1] is presented in Section 3. In 
Section 4, an idea of the newly proposed LNS technique is explained. 
 
Related Work: 

Arithmetic Algorithms: 

 The first and simplest LNS architecture for addition and subtraction was introduced in 1975 [8], which was 
a direct implementation of (3) and (4) using lookup tables (LUT) covering all possible values of F(r = j – i ). 
Due to the fact that the size of the LUT will increase exponentially when word-length increases, the proposed 
architecture was restricted to only a 12-bit device and would have been impractical for more than 20 bits. In 
1991, Lewis [6] suggested a design for LNS addition and subtraction by implementing an interpolation scheme 
with the Taylor series, at a limit of 28 bits. This design used a first-order of Taylor series, which requires two 
LUTs, a multiplier and an adder to compute the logarithmic addition and subtraction functions. The use of FXP 
multiplication has a much higher cost, both in terms of latency and area, and dissipates more power. Therefore, 
with the increases in word sizes, the design will become inefficient and more complicated.  
 There is an alternative technique for function evaluation to replace the interpolation scheme. By using 
bipartite tables [9], only LUTs and adders are used, thus eliminating the multiplier in the interpolation scheme. 
However, the difficulty of implementing this technique to interpolate the subtraction function at r close to zero 
as shown in Fig. 1, will end up with larger table sizes. Apparently, about 2031K bits are required to estimate the 
log function at 24-bit word-lengths.  
 In 1999, Coleman [7] proposed a co-transformation method. This technique was introduced to cater for the 
problematic issue of interpolating the subtraction function at r close to zero. The technique transformed a 
subtraction with i and r, where r > -1 into an equivalent subtraction with i2 and r2, where r2 < -1. Computation 
of the latter subtraction then used a novel interpolation technique with an error correction algorithm. With 
accuracy and speed better than FLP, it is proof that this technique is a well-suited approach to be implemented 
for LNS architecture. Using the same concept as described by Coleman, Arnold in [11] substantially improved 
this co-transformation method by changing the ROM contents and the way that the interpolation unit was 
computed.  Hence, slightly better accuracy than Coleman’s method was achieved. 
 
Units for Measurement: 

 In making a selection for an arithmetic unit for a particular application, several criteria must be considered. 
The speed is usually considered to be the worst case delay from input to the output. The area of each circuit is 
based on the total gates or cells.  
 In order to account for both power and performance, or so called power-efficiency, metrics such as BIPS/W, 
BIPS2/W and BIPS3/W are used [16-17]. The most popular metric is BIPS/W, which is equivalent to the 
reciprocal of mW/MIPS, which indicates on average how much energy a device needs to execute an instruction, 
i.e. its energy-efficiency. However, this metric cannot differentiate between two devices which have relatively 
different speed and performance. Hence, in order to measure the compromise between energy efficiency and 
performance, BIPS2/W is used. Subsequently, others have raised the issue that neither of these metrics considers 
the effect of a reduction in voltage, since power ≈ C∙V2∙f. Therefore BIPS3/W is proposed as another important 
metric to measure energy efficiency when voltage scaling is taken into account. As a result, BIPS3/W is 
independent of the supply voltage and this metric is widely used nowadays to compare devices using different 
supply voltages and fabrication technologies [18]. 
 

Benchmark Analysis: 

Design Implementation: 

 We synthesised an ASIC implementation of one the freely downloadable FLP libraries [12]. It is IEEE 754 
compliant, that is, it considers all exceptional cases. For LNS, the technique presented in [1] is used, which also 
covers all exceptional cases. The comparisons will focus on 32-bit (single-precision format) word-lengths based 
on a flowthrough (non-pipelined) architecture. Small modifications are made in the FLP libraries to exclude 
pipeline registers as initially they are in pipeline mode. The libraries are synthesised based on the Synopsys 
Design Compiler (DC) tool using the High Speed (HS) Faraday 0.13μm CMOS technology with the power 
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supply set to 1.2V. Each of the arithmetic units has been exhaustively tested for functionality, worst case delay, 
total cell area, average power consumption and power-efficiency. In ensuring all libraries have been fully 
optimised, the Synopsys DC Ultra option is used which eventually can provide an automated flow that 
encapsulates data-path and timing optimisation, thus significantly improving the quality of the results. Default 
switching activity with random pattern numbers embedded in the DC tool is employed to estimate the total 
power dissipation in all libraries.  

 
 
Fig. 1: LNS add and sub functions [1]. 
 
Latency, Area and Power: 

 As shown in Fig. 2(a), LNS addition and subtraction outperform FLP in terms of speed, a result that is 
comparable with the published results in [1]. In contrast, LNS tends to consume more power because of the use 
of multipliers during interpolation, which contribute nearly 50% of the total power dissipation in the system, on 
top of 25% dissipated from LUT access. From the point of view of power efficiency, the two results tend to 
cancel out; as seen in Fig. 2(b), one or the other appears more efficient depending on which metric is used. 
 In arithmetic operations, the multiplier is the most area hungry component and has always been a limiting 
factor in terms of speed [13]. In the LNS, the multiplier has the same format as the FXP adder, therefore it is 
able to achieve remarkable speed and the most optimum power-efficiency when compared with FLP, as shown 
in Fig. 3. In this analysis, LNS multiplier is based on a high performance FXP adder described in [14].  
 

 
 
Fig. 2: Analysis of 32-bit add/sub unit. 
 
Accuracy: 

 Results of accuracy evaluation are taken from [1], as the same architecture has been used for the analysis in 
Section 3.1. The accuracy analysis is not needed for LNS multiplication because it always returns exact results.  
As described in Table 1, the LNS add/sub upholds emax rel arith within the FLP limit of 0.5. Furthermore, values of 
|e|av rel arith are also equivalent to FLP even though a small bias does exist.  
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Fig. 3: Analysis of 32-bit multiplier unit. 
  
Case Study: 

 The Multiply-Accumulate (MAC) unit is amongst the most important operations in DSP applications, thus 
it is of interest to execute this operator for case study purposes. As expected, LNS has the lowest delay to 
propagate the inputs to the outputs as presented in fig. 4(a). Again, the LNS implementation has the larger area, 
and dissipates slightly more power. However, the reduced delay more than compensates for the larger power 
requirement and, as shown in Fig. 4(b), the LNS implementation offers a substantially better power efficiency 
regardless of the choice of metric. 
 
Discussion: 

 Evidently the LNS has achieved a great deal over FLP in terms of speed and accuracy. In terms of power 
efficiency, the results for addition and subtraction operations are ambivalent, but for the MAC operation the 
LNS already appears to deliver a dramatic improvement. Clearly it is worthwhile to pursue the goal of further 
reductions in LNS power dissipation, while doing nothing to the detriment of its speed. Reductions in area 
might also be sought. It has to be noted that the use of multipliers during the LNS interpolation can be costly, 
either in area or power, thus by excluding this unit one can potentially enhance LNS performance.  
 
Proposed Technique: 

 As previously mentioned, the implementation of the multipliers in LNS whilst performing interpolation can 
significantly increase the total power and delay of the system. Hence, a new approach is under investigation 
which can bypass the interpolation process. In order to achieve a higher speed and lower power LNS, the 
proposed technique is a development of the range shifter concept illustrated in [7]. Based on Fig. 1, the range 
shifter will be recursively used at each interval of r at powers of two, i.e. -1..0, -2..-1, -4..-2, -8..-4 etc. 
Whichever range the initial subtraction falls into, the respective range shifter will transform i and r into two  
new values, i2 and r2, where r2 is in a range at least one power of 2 less than that of r. The same process will 
then be repeated continuously until it comes to r2 ≈ -27. At this end point, the non-linear function reaches zero, 
thus giving equations (3) and (4) approximately equal to the updated value of i2. Clearly the achievement of the 
final result is an interpolation free process. Although the proposed technique is expected to involve a large size 
of LUT, on-going improvements are being carried out to gradually reduce them. 
 
Table 1: Error analysis for 32-bit add/sub unit [1]. 

 Operation emax rel arith emin rel arith eav rel arith |e|av rel arith 
LNS Add 0.4544 -0.4047 0.0457 0.1777 

Sub 0.4414 -0.4952 0.0455 0.1776 
FLP Add 0.5 -0.5 0 0.1733 

Sub 0.5 -0.5 0 0.1733 
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                        (a) Latency, area and power.                    (b) Power efficiency. 
 
Fig. 4: Analysis of 32-bit MAC unit. 
 
Conclusion: 

 Hitherto, LNS has been shown to be superior to FLP in terms of speed and accuracy at 32-bit word-lengths, 
but little previous work has measured its effectiveness in terms of power-efficiency. The analysis presented here 
demonstrates that the LNS is capable of achieving substantially better power-efficiency than FLP, not only in 
multiplication, but also in the crucial MAC operation. A proposed improvement has been outlined, which by 
excluding the interpolation scheme is expected to deliver a higher performance still. 
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