Effects of cationization hybridized biopolymer from Bacillus subtilis on

flocculating properties

Abstract

Bacillus subtilis isolated from palm oil mill wastewater was able to produce biopolymer with high

flocculating activity in treating kaolin clay suspension (Al2Si2O5(OH)4). Hybridization of the

biopolymer with monovalent, divalent, and trivalent metal ions could enhance the flocculating

activity. Hybridized biopolymer with divalent metal ion (Ca2+ or Mg2+) obtained the highest

flocculating activity compared to that of monovalent (K+) and trivalent (Al3+) metal ions.

Biopolymer hybridized with Ca2+ and Mg2+ ions achieved 71.61 and 62.72% flocculation

efficiency, respectively, at dosage of 600 mg/L. Electron configuration of the metal ions is the

prime factor that affects the formation of bonding between biopolymer and kaolin clay

suspension. Under optimum growth condition, B. subtilis was able to produce 4.15 g/L of

purified biopolymer with multivalent metal ion hybridization. CHNS/O analyzer has been used to

analyze the ratio of C:H:N:S:O elements contained in the biopolymer. Fourier transform infrared

spectrum has been used to analyze the functional group of biopolymer and reaction between

hybridized biopolymer and kaolin clay suspension. © 2015 Balaban Desalination Publications.

All rights reserved.

Keywords

Bacillus subtilis; Biopolymers; DNA; Kaolin clay suspension; Microbial growth; Water pollution