NOVEL APPROACH FOR REDUCING CHATTERING EFFECTS IN SLIDING MODE CONTROL SYSTEM

AEI AMER AHMED

UNIVERSITY MALAYSIA PERLIS

ACKNOWLEDGEMENTS

I would like to use this opportunity to express my sincere gratitude to my supervisor, Prof. Dr. R. Badlishah Bin Ahmad for his continuous encouragement, advice and motivation which has enabled me to achieve my goals to complete this research to the best of my objectives. His insight and knowledge makes him a significant person to me. It has been a great honour to be his student.

I would also like to thank my co-supervisor Dr. Abid Yahya for his kind support, and invaluable suggestions.

I would like to express my gratitude towards all those who have given me the possibility to complete this thesis.

I wish to thank my parents, for their daily prayers, giving me motivation and strength, and encouraging me to achieve my goals.

Last but not least, sincere thanks and gratitude to my wife Shaymaa and my children Rafal, Aeysha and Abdullah who have inspired me with their, courage, support and patience throughout the period of my study.

Ali Amer Ahmed Al Rawi

TABLE OF CONTENTS

		Page
DEC	LARATION OF THESIS	i
ACK	NOWLEDGEMENTS	ii
TABl	LE OF CONTENTS	iii
LIST	OF TABLES	vii
LIST	OF FIGURES	viii
LIST	OF ABBREVIATIONS	xiii
LIST	OF SYMBOLS	xvi
ABST	ΓRAK (MALAY)	xviii
ABST	ΓRACT	xix
СНА	TOF TABLES OF FIGURES OF ABBREVIATIONS OF SYMBOLS FRAK (MALAY) FRACT PTER 1INTRODUCTION	
1.1	Background	1
1.2	Problem Statement	3
1.3	Research Objectives	5
1.4	Scope of research	7
1.5	Summary of Contributions	8
1.6	Thesis Outline	9
СНА	PTER 2 LITERATURE REVIEW	
2.1	Introduction	11
2.2	Sliding Mode Controller	15

	2.2.1	Existing Condition	17
	2.2.2	Reaching Condition	18
	2.2.3	Sliding Mode Controller Parameters	18
2.3	Class	ification of Sliding Mode Controller	21
	2.3.1	Sliding Mode Controller Based on System Type	21
		2.3.1.1 Continuous Time Sliding Mode Controller	22
		2.3.1.2 Discrete Time Sliding Mode Controller	22
		2.3.1.3 Sample data Sliding Mode controller	23
	2.3.2	Sliding Mode Controller Based on Sliding Surface Method	24
		2.3.2.1 Conventional Sliding Surface With or Without Model	24
		Following	
		2.3.2.2 Dynamic Sliding Surface With or Without Model Following	24
2.4	Chatt	ering in SMC	25
	2.4.1	Chattering Due to Parasitic Dynamics	
2.5	Chatt	ering Reduction Methods	27
	2.5.1	Boundary Layer Method	28
Z	his,	2.5.1.1 Boundary Layer Sliding Mode Controller	29
		2.5.1.1.1 The Saturation Function	29
		2.5.1.1.2 The Sigmoid Function Sliding Mode Controller	34
		2.5.1.1.3 The Conical Boundary Layer	35
	2.5.2	Observer-Based Sliding Mode Control	36
	2.5.3	Two-Dimensional Vector Control called Super-Twisting	39
	2.5.4	Time-Varying Switching Gain	41
2.6	Summ	ary	42

CHAPTER 3 RESEARCH METHODOLOGY

3.1	Intro	duction	44
3.2	Basic	e Sliding Mode Controller Design	45
	3.2.1	Controller Design Evaluations	46
	3.2.2	SMC Design Parameters Evaluation and Analysis	47
		3.2.2.1 System Stability	47
3.3	Obse	ervability and Controllability	48
	3.3.1	Linear Time-Invariant (LTI) Systems	49
3.4	Softv	vare Simulation	50
3.5	Simu	lation Model Over view	51
3.6	Over	view of Proposed Methodologies	51
	3.6.1	Sliding Mode with State Feedback Controller	52
	3.6.2	Modeling Sliding Mode with State Feedback Controller	52
	$ U_{I_{i}} $	3.6.2.1 SMSFC System Modelling	63
		3.6.2.2 EvaluationScenarios	63
		3.6.2.3 Performance metrics	64
	3.6.3	Pre-programmed Exponential Sliding Mode Controller	65
	3.6.4	Combination of Nonlinear Functions with Sliding Mode Controller	82
3.7	Sumi	mary	83
CHA	APTER	4RESULTS AND DISSCUSION	
4.1	Intro	duction	85

4.2	Perfo	ormance Analysis of SMSFC	86
	4.2.1	External load	93
	4.2.2	System with External and internal noise	96
	4.2.3	Parameter Variations	97
	4.2.4	External load, Noise and Parameter Variations Effect	98
	4.2.5	Nonlinear Input Source	101
	4.2.6	Comparison of SMSFC and STW with Nonlinear Input Source	101
	4.2.7	External load Applied between 1.5 to 4 Seconds	105
4.3	Chat	tering Analysis	110
4.4	Com	parative Analysis of SMSFC with BLSMC and CSMC	115
4.5	Eval	uation and Analysis of SMSFC and BLSMC with High level-	119
	Mea	surement Noise	
4.6		pression between the SMSFC signal with Exponential Signal	121
4.7	SMS	FC Comprarative Analysis with Low Pass Filter on SMC	123
	4.7.1	Evaluation of SMSFC and BLSMC in the Robotics System	127
4.8	Perfe	ormance and Evaluation of Pre-programmed Exponential Sliding Mode	129
		roller	12)
4.9	Perfor	rmance Evaluation of CNFSMC	134
CHA	APTER	S 5CONCLUTION AND RECOMMENDATION	
5.1	Conc	elusions	136
5.2	Futu	re Work	140
REF	FEREN	CES	142
LIS	LIST OF PUBLICATIONS AND AWARDS		

LIST OF TABLES

No.	Page
4.1 SMSFC System Performance	100 Err
	or!
	Bookm
	ark
	not
	define
	d.
4.2 Comparison of Time Response (SMSFC and STW)	103
4.3 Comparison of Control Signals (SMSFC and STW)	104
4.4 Standard Deviation of Chattering in SMSFC and CSMC	112
4.5 Mean of Chattering for SMSFC and CSMC	114
4.6 Standard Deviation of Chattering in SMSFC, BLSMC and CSMC	117
4.7 Standard Deviation of Chattering for SMSFC, BLSMC, CSMC and LPFSMC	124
4.8 Standard Deviation of Chattering in SMSFC, BLSMC, CSMC LPFSMCwith	126
External Noise and Parameter Variations	
5.1 Summary of the Reduction of the Effect of Chattering Phenomenon in Different	138
Cases (With and Without External Load, Noise, and Changes in the System	
parameters)	

LIST OF FIGURES

No.	PAGE
2.1 Samples of SMC Applications	13
No. 2.1 Samples of SMC Applications 2.2 Literature Review Flowchart	14
2.3 Phase Plane Trajectory of Second-Order System	20
2.4 Chattering Phenomenon on Switching Surface (Sliding Phase)	26
2.5 Saturation Function $sat(\sigma)$	30
2.6 Sliding Surface and Boundary Layer (BL)	31
2.7 Sliding surface and boundary layer	32
2.8 A Nonlinear Switching Curve	33
2.9 Sigmoid Function (Sigmoid (σ))	35
2.10 Sliding Mode Controller with Asymptotic Observer	37
2.11 Sliding Mode with Asymptotic Observer	38
3.1 Graphical User Interface Routh-Hurwitz Criterion	48
3.2 Block Diagram for State-Space System Dynamics	54
3.3 System with <i>m</i> Inputs and <i>n</i> Outputs	57
3.4 Block Diagram of Sliding Mode State Feedback Controller (SMSFC) System	59
3.5 Detail Components for Sliding Mode State Feedback Controller (SMSFC) System	60
3.6 Detail Components of SMSFC Controller System	61
3.7 Sigma Generation for SMSFC System	61

System Silding Mode Controller with State Feedback Controller (SMSFC)	62
3.9 Relation between the Sliding Line Slope and Gain Amplitude	67
3.10 Phase Plane of System with Sliding Line Moving from $(\theta_1 \text{ to } \theta_2)$	68
3.11 Effect of Angle Changing of Sliding Line on the Amplitude of Chattering	70
0.1 Switching of Sliding Mode Controller with Different Time Intervals	71
3.13 Relationship between Chattering and Amount of Switching on SMC	72
3.14 Effect of Exponential Gain on Amplitude of Sliding Mode Control Signal	73
Error! Bookmark not defined.	
3.15 Block Diagram of Pre-programmed Exponential Sliding Mode Controller	73
Error! Bookmark not defined.	
3.16 Relation between the Input and Fixed Magnitude Gain of PPESMC	74
3.17 Nyquist Plot of Switching Function	75
3.18 Reduction of the Chattering Phenomenon for the Proposed PPESMC Compared	77
to CSMC (a) Control Signal, (b) Sliding Function Signal	
3.19 Relationship of Sliding Mode Gain and System States with Sliding Surface, M1	77
and M2 which are the Magnitude of Controller, Z Slope Parameter	
3.20 Relationship of Exponential Gain of Sliding Mode Controller and System States	78
(x1, x2) with Sliding Surface	
3.21 Overall Schematic of PPESMC	79
3.22 PPESMC Algorithm Flowchart	81
3.23 Block diagram of Combination Nonlinear Functions with Sliding Mode	82
Controller (CNFSMC)	
4.1 High Chattering in Phase Plane of System Using CSMC with Initial Condition	86
$(x_{01} = -1.5, x_{02} = 1.5)$	
4.2 Signal with High Frequency Switching of CSMC	87
4.3 States Response of System, with High Chattering on the Second State (x2),	88
Switches at High (Theoretically Infinite) Frequency of CSMC	

4.4 Phase Plane of the System Using SMSFC Eliminates the Chattering	89
Phenomenon, with Initial Condition (1.5, -1.5)	
4.5 Compression of States Response of the System Using SMSFC and CSMC	90
(Reduced the Effect of Chattering in the System Using SMSFC)	
4.6 Comparison of Control Signals of CSMC and SMSFC	91
4.7 Phase Plane of the Three Different Types of Controllers CL, CSMC and SMSFC	91
with Same Initial Condition	
4.8 Zooming of the Phase Plane Shows High Chattering in CSMC and Chattering	92
Reduction in SMSFC	
4.9 Block Diagram of a Position-Control, Armature-Controlled DC Motor (Kanojiya	93
& Meshram, 2012)	
4.10 System Response Using SMSFC when 120% Load is Applied to the System	94
4.11 System Response Using SMSFC and CSMC when 120% Load is Applied to the	94
System	
4.12 (a) Control Signal of SMSFC, (b) Phase Plane of SMSFC, (c) Control Signal	95
of CSMC, (d) Phase Plane of CSMC	
4.13 SMSFC System Responses when \pm 40 % Noise is Applied to the System	96
4.14 System Time Responses Using SMSFC and CSMC Respectively when 30 %	98
Parameter Variations Occur	
4.15 System Time Responses Using SMSFC and CSMC Respectively when 120%	99
External Load, 40% External Noise and 30 % Parameter Variations Occur	
4.16 (a & c) Comparison of System Response using SMSFC and STW with	102
Nonlinear Input, (b & d) Phase Plane of the System using SMSFC and STW	
4.17 Response of the SMSFC and STW Controllers when Nonlinear Input was	103
Applied	
4.18 Control Signal of the SMSFC and STW Controllers when Nonlinear Input was	104
Applied	
4.19 Sliding Equation Signal for both SMSFC and STW when Nonlinear Input was	105
Applied to the System	
4.20 Phase Plane of the System Using both SMSFC and STW its Clear the Limit	106
Cycle Red color line of STW near Equilibrium point, Blue Color of SMDFC	
4.21 (a) System responses with 120 % load between 1.5 to 4 seconds using SMSFC,	107

(c) System responses with 120 % load between 1.5 to 4 seconds using STW, (b) Phase Plane of the System Using SMSFC, (d) Phase Plane of the System Using STW	
4.22 SMSFC Response when 120 % applied load between 1.5 to 4 seconds	107
4.23 STW Responses when 120 % Load Applied Between 1.5 to 4.0 seconds	108
4.24 SMSFC Control Signal when 120% External Load is Applied Between 1.5 and 4.0 Seconds	109
4.25 CSMC Control Signal when 120% External Load is Applied Between 1.5 and 4.0 seconds	109
4.26 Response of Second State of the System ($x1 = x2$) for SMSFC and CSMC	111
 4.27 SMSFC and CSMC Control Signals 4.28 Response of System States (x1 ,x2) for SMSFC and CSMC with Different Initial Conditions (x01 =±0.5, x02 =±0.5) 	111 112
4.29 Standard Deviation of Chattering in SMSFC and CSMC with Different Initial Conditions $x_{o1,o2} = \pm 0.5$, $x_{o1,o2} = \pm 1$ and $x_{o1,o2} = \pm 1.5$	113
4.30 Mean of Chattering for SMSFC and CSMC under Different Initial Conditions $x_{o1,o2}=\pm 0.5$, $x_{o1,o2}=\pm 1$ and $x_{o1,o2}=\pm 1.5$	114
4.31 Phase Plane Trajectory of the System for SMSFC, BLSMC and CSMC	115
4.32 Response of the Three Sliding Equations σ_{SMSFC} , σ_{BLSM} and σ_{CSMC}	116
4.33 Standard Deviation of Chattering in SMSFC, BL SMC and CSMC under Different Initial Conditions $x_{o1,o2} = \pm 0.5$, $x_{o1,o2} = \pm 1$ and $x_{o1,o2} = \pm 1.5$	117
4.34 Chattering-Area of SMSFC, BL SMC and CSMC for Number of Iterations	118
4.35 Control Signal of the Three Controllers (SMSFC, BLSMC and CSMC)	118
4.36 (a) System Response Using BLSMC, (b) Phase Plane Using BLSMC, (c) Control Signal of BLSMC and (d) Error Signal Using BLSMC, when BL Thickness is 0.01	
4.37 (a) System Response Using BLSMC, (b) Phase Plane Using BLSMC, (c) Control Signal of BLSMC and (d) Error Signal Using BLSMC, when BL Thickness is 0.1	

4.38 (a) System Response Using SMSFC, (b) Phase Plane Using SMSFC, (c) Control	120
Signal of SMSFC, and (d) Error Signal Using SMSFC with HLMN 4.39 (a) System Response with Programmable Input Using Exponential Control Signal, (b) Control Signal and (c) Error signal	122
4.40 (a) System Response, (b) Control Signal and (c) Error Signal with Programmable Input Using SMSFC	123
4.41 Standard Deviation of Chattering for SMSFC, BL SMC, CSMC and Low Pass	125
Filter SMC under Different Initial Conditions	
4.42 Chattering-Area of SMSFC, LPFSMC, BLSMC and CSMC under Different	125
Initial Conditions	
4.43 Standard Deviation of Chattering on SMSFC, BLSMC, CSMC and LPFSMC	126
with External Noise and Parameter Variations	
4.44 Chattering-Area of SMSFC, LPFSMC, BLSMC and CSMC with External Noise	127
and Parameter Variations	
4.45 The Robotic Phase Plane of Robotics under Different Initial Conditions	128
4.46 Zooming of the Robotic Phase Plane under for SMSFC and BLSMC	128
4.47 a) Time Response, (b) Error Response and (c) Control Signal of Robotics under Different Initial Conditions Using SMSFC and BLSMC	129
4.48 Phase Plane of Unobservable System Using SMSFC can't Read All System	130
States By Sensor	
4.49 Compression Phase Plane of Unobservable System Using SMSFC and PPESMC	130
4.50 (a) System Response Using PPESMC with Nonlinear Input, (b) Error (c) Signal	131
and Control Signal	
4.51 (a) System Response using PPESMC, (b) Error Signal and (c) Control Signal with External Load	132
4.52 (a) System Response Zooming Using PPESMC (b) Control Signal (c) Error	133
Signal	
4.53 (a) System Response Using CNFSMC, (b) Error Signal (c) Control Signal and	135
(d) Parameter Changes	
4.54 Phase Plane System . Using CNFSMC and STW	135

This item is protected by original copyright

LIST OF ABBREVIATIONS

2-DSMC **2**nd order Discrete-Sliding -Mode Control

2-SMC Second-order Sliding Mode Control

ADSMCS Adaptive Dynamic Sliding-Mode Control System

AFSMC Adaptive Fuzzy system Sliding Mode Control

BIBO Boundary Input Boundary Output

BL Boundary Layer

BLM Boundary Layer Method

BLSMC Boundary Layer Sliding Mode Controller

CBL Conical Boundary Layer

CL Closed Loop

CMFSMC Combination Nonlinear Functions with Sliding Mode Controller

CNC Computer Numeric Control

CSMC Conventional Sliding Mode Control

CSS Conventional Sliding Surface

CTSMC Continuous time Sliding mode controller

DF Describing Function

DSMC Dynamic Sliding Mode Control

DSMC Dynamic Sliding-Mode Controller

DSP Digital Signal Processing

DSS Dynamic Sliding Surface

DTSMC Discrete Time Sliding Mode controller

EQC Equivalent-Control

FLC Fuzzy-Logic-Controller

GUI Graphical User Interface

H-LMN High-Level Measurements Noise

HOSMC High Order Sliding Mode Controller

IFO Indirect Field-Orientation control

IM Induction Motor

LPFSMC Low Pass Filter Sliding Mode Controller

LTI Linear Time-Invariant

ISS Input to State Stability

OBM Observe Method

PID Integral, Derivative controller

PPESMC Pre-programmed Exponential Sliding Mode Controller

PPT Phase Plane Trajectory

RRBFN Recurrent Radial Basis Function Network

Std Stander deviation

SDSMC Sample data Sliding Mode controller

SISO Single-Input Single-Output

SMC Sliding Mode Controller

SMCS Sliding-Mode Controller with a Smooth control law

SMSFC Sliding Mode with State Feedback Controller

SSE Steady State Error

STW Super-Twisting (STW)

TDVC Two-Dimensional Vector Control

TOC Time Optimal Controller

TS Takagi-Sugeno

TS Taylor Series

TVSG Time-Varying Switching Gain

UMD Unmodeled Dynamics

VSCS Variable Stricture Control System

VSS Variable Structure System

This item is protected by original copyright.

LIST OF SYMBOLS

 \mathbb{R}^m *m-dimensional* control vector θ Angle of sliding line Boundary Layer thickens 3 Constant gain k Control input or state velocity vectors $u^{-,+}$ Controllability Gramian
Controllability Matrix
Controller parameters и W_{c} Ρ β_1, β_2 wc Dynamical system around the origin x_f Final time Т Frequency w Gain Components Gain Matrix of State Feedback Initial time Input matrix in state space В Input signal r(t)Magnitude deflection of controller δ Matrix states of system in state space Α Observability Gramian W_{0} С Output matrix in state space Parameters of Controllability Matrix α

Period time of switching function ΔT

Feedforward Matrix D

Reduction filter parameter γ

saturation function sat

Sliding function σ

Sliding line parameters (slop) С

64 original copyright State feedback controller parameter k_1, k_2

Switching Components Ψ

System state Χ

Time Т

m-dimensional order Μ

Ν *n*-dimensional order

n-dimensional state vector \mathbb{R}^n

Magnitude of switching gain M_1

Pendekatan Baru Mengurangkan Kesan Chattering Dalam Sliding Mode Sistem Kawalan ABSTRAK

Alat kawalan mod gelangsar (SMC) ialah sejenis sistem kawalan struktur boleh ubah, yang merupakan alat autoritatif bagi menangani perubahan tak pasti dan gangguan luaran dalam sistem parameter dan sistem tak linear. Walaupun SMC dikaitkan dengan beberapa kelebihan ketara seperti kekukuhan, alat kawalan mod gelangsar konvensional (CSMC) tidak dapat memenuhi kebanyakan keperluan sistem, terutamanya berdekatan titik keseimbangan akibat getaran kuat disebabkan pensuisan berkelajuan tinggi (frekuensi tinggi isyarat kawalan berdekatan garisan gelangsar). Tesis ini tertumpu pada pembangunan alat kawalan baru dan algoritma bagi mengurangkan kesan fenomena getaran dalam usaha mencapai prestasi sistem yang efisien. Ia merangkumi tiga konsep mod gelangsar baru; mod gelangsar dengan pengawal suap balik keadaan (SMSFC), pengawal mod gelangsar eksponen praprogram (PPESMC), dan gabungan fungsi tak linear dengan pengawal mod gelangsar (CNFSMC). Kesemuanya direka berteraskan konsep SMC. SMSFC bertujuan bagi mengurangkan kesan fenomena getaran yang lazim dikaitkan dengan penggunaan CSMCdalam keadaan hingar dan ketakpastian. Ini diperoleh dengan memperhalus amplitud gandaan CSMC dan mencapai keadaan capahan sistem. Pengawal suap balik keadaan akan melaksanakan pemformatan semula dan penggabungan yang lancar dengan CSMC bagi menghasilkan pengawal bersepadu yang dipanggil mod gelangsar dengan pengawal suap balik keadaan (SMSCF), manakala PPESMC bergantung pada nilai isyarat ralat dan menjanakan gandaan eksponen yang berkadaran dengan isyarat ralat tersebut. Akhir sekali, kombinasi fungsi tak linear dengan pengawal mod gelangsar (CNFSMC) boleh dibina dengan menggabungkan kaedah SMSFC dan PPESMC. Kaedah ini bergantung kepada dua ciri keadaan eksponen yang berhubungan dan tak linear. Pengawal baru ini terbukti berkesan sebagai strategi kawalan bersepadu yang kukuh dan efektif untuk sistem linear dan tak linear yang tak pasti dan mengalami perubahan parameter, selain berupaya mengurangkan kesan fenomena getaran. Penilaian, perbandingan dan analisis prestasi ketiga-tiga kaedah ini (SMSFC, PPESMC dan CNFSMC) untuk sistem SMC dibentangkan dalam tesis ini, dan prestasi masing-masing dibandingkan dengan mod gelangsar lapisan sempadan super-berputar dan penapis laluan rendah kaedah SMC (STW, BLSMC and LPFSMC) apabila diaplikasikan dalam motor DC dan robotik. Kesimpulan utama yang dapat diperoleh daripada tesis ini menunjukkan bahawa SMSFC yang dibangunkan dan digunakan seperti diterangkan di atas telah menunjukkan kekukuhan sistem, prestasi yang tinggi serta kawalan pengesanan trajektori yang baik dalam keadaan hingar dan ketakpastian sesebuah model. Penilaian dan analisis dijalankan terhadap indeks prestasi yang berbeza dan di bawah keadaan operasi yang berlainan. Keputusan menunjukkan bahawa di bawah beban luaran dan hingar luaran yang berbeza serta perubahan parameter sistem, prestasi SMSFC, PPESMC dan CNFSMCterbukti lebih baik berbanding STW, BLSMC dan LPFSMC dalam pengurangan kesan fenomena getaran, masing-masing sebanyak 95%, 68%, 78% dan 89%.

Novel Approach for Reducing Chattering Effects in Sliding Mode Control System

ABSTRACT

The sliding mode controller (SMC) is a type of variable structure control system (VSCS), which is an authoritative tool for dealing with uncertainty, variations in parameter systems, nonlinear systems and external disturbances. Although significant advantages are associated with SMC such as robustness, the conventional sliding mode controller (CSMC) does not cover most of the requirements of the system, especially near the equilibrium point because of the high chattering which occurs as a result of high-speed switching (high frequencies of control signal near sliding line). This thesis is concerned with developing a novel controller and algorithms to reduce the effect of the chattering phenomenon, in order to achieve an efficient system performance. It includes three novel sliding mode concepts; sliding mode with state feedback controller (SMSFC), pre-programmed exponential sliding mode controller (PPESMC), and combination of nonlinear functions with sliding mode controller (CNFSMC). These are based on the SMC concept. The SMSFC is designed to reduce the effect of the chattering phenomenon that is present with the use of CSMC when noise and uncertainties occur. This is accomplished by refining the gain amplitude of CSMC, obtaining the convergence states properties of the system. The state feedback controller reformats and combines seamlessly with the CSMC to produce an integrated controller called a sliding mode with state feedback controller (SMSCF), whereas PPESMC relies on the value of an error signal and generates an exponential gain which is proportional to the error signal. Finally, a combination of nonlinear functions with sliding mode controller (CNFSMC) can be constructed from a combination of SMSFC and PPESMC. This method depends on two interrelated and nonlinear state-exponential properties. These new controllers have proved to be a robust and effective integrated control strategy for uncertain, varied-parameter, linear, and nonlinear systems, in addition to reducing the effect of the chattering phenomenon. Performance evaluations, comparisons, and analysis for the three methods (SMSFC, PPESMC and CNFSMC) for the SMC system are presented in this thesis, and their performance compared with the super-twisting (STW), boundary layer sliding mode (BLSMC) and low pass filter (LPFSMC) with SMC methods respectively when applied to a DC motor and robotics. The main conclusion drawn in this thesis was that the SMSFC as developed and implemented exhibited robust and high performance and trajectory tracking control given modeling uncertainties and noise. The evaluation and analysis were performed for different performance indexes and under different operational conditions. The results showed that under various external loads, external noise, and variations in system parameters SMSFC, PPESMC, CNFSMC, STW, BLSMC and LPFSMC with respect to reduction of the effect of the chattering phenomenon by 95%, 94%, 97%, 68%, 78% and 89% respectively.

CHAPTER 1

INTRODUCTION

1.1 Background

Controller systems are dominant in everyday life. Scientific progress and the achievement of consistently outstanding advances in the field of analogue and digital controllers, electronic devices in optical and telecom systems, information networks, local and global activities and controller systems' vital role in the development of the use of advanced control have reached a high level in recent years, especially in the areas of industrial applications, robots, military applications, medical applications and space applications (Boiko 2011, Dorf and Bishop 2011). Such crucial developments require that the control systems must be at the same stage of evolution in all applications. System performance in terms of high precision, speed response, non-chattering, no overshoot and zero steady-state error are the most important and basic requirements for control systems.

The traditional control systems that are applied to linear and nonlinear systems may not be appropriate for all desired system requirements, especially in varied-parameter and uncertain systems (Kundur 2001). Uncertain control systems have been successfully tested, however, by using variable structure systems (VSS) with the sliding mode control (SMC) method (Utkin 1977).

Theoretically, SMC provides powerful stability control systems through a high gain with infinite fast switching (Crassidis and Markley 1996). High-gain control designs,

however, suffer from a defective peaking phenomenon. SMC constitutes regular discontinuous control input with infinite switching frequency. This will obviously lead to an undesirable phenomenon called chattering (Huang 2013). This phenomenon has some disadvantages in mechanical and electrical systems such as mechanical wearing and overheating of the electrical components (Piltan, at el. 2011).

The emergence of SMC theory in practical applications gives certain guarantees regarding modelling error and the parameter uncertainties of the system and satisfies most of the demands of these complex systems. Although sliding mode control systems are robust and easy to design and implement (Utkin 1978, Bengiamin and Chan 1982, Utkin, Guldner et al. 1999, Barambones, Garrido et al. 2006, Baburaj and Bandyopadhyay 2012, Ahmed, et al. 2013, Al-Hadithi, et al. 2013), the phenomenon of chattering (which is the implied nature of the control of the discontinuous signal) is a problem; therefore, there is some uncertainty about this approach (Mihoub, et al. 2010, Takhmar, et al. 2012).

The development of the sliding mode control system (SMCS) has addressed the main obstacle posed by the phenomenon by the use of CSMC. Although the implementation of modern SMC has been used to reduce the effect of chattering, most of these methods have weaknesses which emerge in the system output. As a result the harmful chattering that accompanies the conventional sliding mode control has become the focus of a great deal of attention. There are different types of chattering in sliding mode controllers, but

this thesis considers only those that can be analysed and addressed as other types may be either harmless or irremediable.

1.2 Problem Statement

There are several approaches to reduce the phenomenon of chattering: for example, the boundary layer method (BLM), the observe method, two-dimensional vector control, the time-varying switching gain (TVSG), the equivalent-control-dependent gain method, the super-twisting method (STW), etc. (Goh, et al. 2003, Liu, et al. 2005, Cupertino, et al. 2008, Min et al. 2008, Ming, et al. 2010, Zaeri, et al. 2012). These methods have disadvantages such as a reduction in the accuracy of the control system, and may be ineffective in the presence of an external load, high level measurement noise (HLMN), parameter system variation, and uncertain systems. As a result, reducing the phenomenon (chattering) may yield weaknesses in other places. Those methods (STW and BLM) lead, however, to weak control signals because the small control signal value reduces the effect of the chattering phenomenon (Yang, et al. 2008, Ming, et al. 2010, Ferreira, et al. 2011, Loukianov, et al. 2011, Zaltni and Abdelkrim 2011, Zhiyu, Gang et al. 2011, Aghababa and Akbari 2012, Al-Hadithi, et al. 2013, Chena, Yangb et al. 2013). Therefore, the most important of the problem statements associated with the use of SMC is as follows:

A small time constant of the system, finite sampling rate in digital sliding mode controller and fast dynamic, which was neglected in the ideal model, causes the chattering phenomenon in sliding mode controllers (Bartolini, et al. 2000, Dal and Teodorescu 2011).

As is it well known the appropriate gain of a sliding controller may ensure the stability of the system; however, this is accompanied by the emergence of the chattering phenomenon. In addition most controller systems suffer from a loss of stability when exposed to external disturbance, high level measurement noise (HLMN) and external loads and variations in the system parameters (Spong and Vidyasagar 1987).

The majority of the offered solutions decrease the value of the gain in order to reduce the chattering phenomenon but the main problem when the system is close to the equilibrium point is that it is possible to lose stability because of the reduction in the amount of gain value. The decrease of gain value (control signal value) of the sliding mode controller in order to reduce the chattering phenomenon has disadvantages for this procedure (Xu, et al. 2004), which lead the trajectory of system states leave the sliding line (Zhao and Jiang 1998). As a result, the controller approach is largely unable to compensate fully for the disturbance. Traditional SMC still provides the closed-loop system with certain characteristics to reduce the influence of external disturbances; however, it is not absolutely foolproof.

Accordingly, a novel approach is needed for designing a sliding mode with state feedback controller (SMSFC) to overcome the most serious weakness of SMC, the chattering phenomenon. The removal of chattering, however, requires precise selection of the gain value to maintain the properties of the sliding mode controller the use of some features of the system itself (property convergence of states in the stable system) in which the states of the system own the property of convergence.