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Pendekatan Baru Mengurangkan Kesan Chattering Dalam Sliding Mode Sistem 
Kawalan 

ABSTRAK  

Alat kawalan mod gelangsar (SMC) ialah sejenis sistem kawalan struktur boleh 
ubah, yang merupakan alat autoritatif bagi menangani perubahan tak pasti dan gangguan 
luaran dalam sistem parameter dan sistem tak linear. Walaupun SMC dikaitkan dengan 
beberapa kelebihan ketara seperti kekukuhan, alat kawalan mod gelangsar konvensional  
(CSMC) tidak dapat memenuhi kebanyakan keperluan sistem, terutamanya berdekatan 
titik keseimbangan akibat getaran kuat disebabkan pensuisan berkelajuan tinggi 
(frekuensi tinggi isyarat kawalan berdekatan garisan gelangsar). Tesis ini tertumpu pada 
pembangunan alat kawalan baru dan algoritma bagi mengurangkan kesan fenomena 
getaran dalam usaha mencapai prestasi sistem yang efisien. Ia merangkumi tiga konsep 
mod gelangsar baru; mod gelangsar dengan pengawal suap balik keadaan (SMSFC), 
pengawal mod gelangsar eksponen praprogram (PPESMC), dan gabungan fungsi tak 
linear dengan pengawal mod gelangsar (CNFSMC). Kesemuanya direka berteraskan 
konsep SMC. SMSFC bertujuan bagi mengurangkan kesan fenomena getaran yang 
lazim dikaitkan dengan penggunaan CSMCdalam keadaan hingar dan ketakpastian. Ini 
diperoleh dengan memperhalus amplitud gandaan CSMC dan mencapai keadaan 
capahan sistem. Pengawal suap balik keadaan akan melaksanakan pemformatan semula 
dan penggabungan yang lancar dengan CSMC bagi menghasilkan pengawal bersepadu 
yang dipanggil mod gelangsar dengan pengawal suap balik keadaan (SMSCF), 
manakala PPESMC bergantung pada nilai isyarat ralat dan menjanakan gandaan 
eksponen yang berkadaran dengan isyarat ralat tersebut. Akhir sekali, kombinasi fungsi 
tak linear dengan pengawal mod gelangsar (CNFSMC) boleh dibina dengan 
menggabungkan kaedah SMSFC dan PPESMC. Kaedah ini bergantung kepada dua ciri 
keadaan eksponen yang berhubungan dan tak linear.  Pengawal baru ini terbukti 
berkesan sebagai strategi kawalan bersepadu yang kukuh dan efektif untuk sistem linear 
dan tak linear yang tak pasti dan mengalami perubahan parameter, selain berupaya 
mengurangkan kesan fenomena getaran.  Penilaian, perbandingan dan analisis prestasi 
ketiga-tiga kaedah ini (SMSFC, PPESMC dan CNFSMC) untuk sistem SMC 
dibentangkan dalam tesis ini, dan prestasi masing-masing dibandingkan dengan mod 
gelangsar lapisan sempadan super-berputar dan penapis laluan rendah kaedah SMC 
(STW, BLSMC and LPFSMC) apabila diaplikasikan dalam motor DC dan robotik. 
Kesimpulan utama yang dapat diperoleh daripada tesis ini menunjukkan bahawa 
SMSFC yang dibangunkan dan digunakan seperti diterangkan di atas telah 
menunjukkan kekukuhan sistem, prestasi yang tinggi serta kawalan pengesanan 
trajektori yang baik dalam keadaan hingar dan ketakpastian sesebuah model. Penilaian 
dan analisis dijalankan terhadap indeks prestasi yang berbeza dan di bawah keadaan 
operasi yang berlainan. Keputusan menunjukkan bahawa di bawah beban luaran dan 
hingar luaran yang berbeza serta perubahan parameter sistem, prestasi SMSFC, 
PPESMC dan CNFSMCterbukti lebih baik berbanding STW, BLSMC dan LPFSMC 
dalam pengurangan kesan fenomena getaran, masing-masing sebanyak 95%, 68%, 78% 
dan 89%.  
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Novel Approach for Reducing Chattering Effects in Sliding Mode Control System 

ABSTRACT 

The sliding mode controller (SMC) is a type of variable structure control system 
(VSCS), which is an authoritative tool for dealing with uncertainty, variations in 
parameter systems, nonlinear systems and external disturbances. Although significant 
advantages are associated with SMC such as robustness, the conventional sliding mode 
controller (CSMC) does not cover most of the requirements of the system, especially 
near the equilibrium point because of the high chattering which occurs as a result of 
high-speed switching (high frequencies of control signal near sliding line). This thesis is 
concerned with developing a novel controller and algorithms to reduce the effect of the 
chattering phenomenon, in order to achieve an efficient system performance. It includes 
three novel sliding mode concepts; sliding mode with state feedback controller 
(SMSFC), pre-programmed exponential sliding mode controller (PPESMC), and 
combination of nonlinear functions with sliding mode controller (CNFSMC). These are 
based on the SMC concept.The SMSFC is designed to reduce the effect of the 
chattering phenomenon that is present with the use of CSMC when noise and 
uncertainties occur. This is accomplished by refining the gain amplitude of CSMC, 
obtaining the convergence states properties of the system. The state feedback controller 
reformats and combines seamlessly with the CSMC to produce an integrated controller 
called a sliding mode with state feedback controller (SMSCF), whereas PPESMC relies 
on the value of an error signal and generates an exponential gain which is proportional 
to the error signal. Finally, a combination of nonlinear functions with sliding mode 
controller (CNFSMC) can be constructed from a combination of SMSFC and PPESMC. 
This method depends on two interrelated and nonlinear state-exponential properties. 
These new controllers have proved to be a robust and effective integrated control 
strategy for uncertain, varied-parameter, linear, and nonlinear systems, in addition to 
reducing the effect of the chattering phenomenon. Performance evaluations, 
comparisons, and analysis for the three methods (SMSFC, PPESMC and CNFSMC) for 
the SMC system are presented in this thesis, and their performance compared with the 
super-twisting (STW), boundary layer sliding mode (BLSMC)  and low pass filter 
(LPFSMC) with SMC methods respectively when applied to a DC motor and robotics. 
The main conclusion drawn in this thesis was that the SMSFC as developed and 
implemented exhibited robust and high performance and trajectory tracking control 
given modeling uncertainties and noise. The evaluation and analysis were performed for 
different performance indexes and under different operational conditions. The results 
showed that under various external loads, external noise, and variations in system 
parameters SMSFC, PPESMC, CNFSMC, STW, BLSMC and LPFSMC with respect to 
reduction of the effect of the chattering phenomenon by 95%, 94%, 97%, 68%, 78% and 
89% respectively. 
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CHAPTER 1  

INTRODUCTION 

 

1.1 Background 

 

Controller systems are dominant in everyday life. Scientific progress and the 

achievement of consistently outstanding advances in the field of analogue and digital 

controllers, electronic devices in optical and telecom systems, information networks, 

local and global activities and controller systems' vital role in the development of the 

use of advanced control have reached a high level in recent years, especially in the areas 

of  industrial applications, robots, military applications, medical applications and space 

applications (Boiko 2011, Dorf and Bishop 2011). Such crucial developments require 

that the control systems must be at the same stage of evolution in all applications. 

System performance in terms of high precision, speed response, non-chattering, no 

overshoot and zero steady-state error are the most important and basic requirements for 

control systems.   

 

The traditional control systems that are applied to linear and nonlinear systems may 

not be appropriate for all desired system requirements, especially in varied-parameter 

and uncertain systems (Kundur 2001). Uncertain control systems have been successfully 

tested, however, by using  variable structure systems (VSS) with the sliding mode 

control (SMC) method (Utkin 1977). 

 

Theoretically, SMC provides powerful stability control systems through a high gain 

with infinite fast switching (Crassidis and Markley 1996). High-gain control designs, 
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however, suffer from a defective peaking phenomenon. SMC constitutes regular 

discontinuous control input with infinite switching frequency. This will obviously lead 

to an undesirable phenomenon called chattering (Huang 2013). This phenomenon has 

some disadvantages in mechanical and electrical systems such as mechanical wearing 

and overheating of the electrical components (Piltan, at el. 2011).     

 

The emergence of SMC theory in practical applications gives certain guarantees 

regarding modelling error and the parameter uncertainties of the system and satisfies 

most of the demands of these complex systems. Although sliding mode control systems 

are robust and easy to design and implement (Utkin 1978, Bengiamin and Chan 1982, 

Utkin, Guldner et al. 1999, Barambones, Garrido et al. 2006, Baburaj and 

Bandyopadhyay 2012, Ahmed, et al. 2013, Al‐Hadithi,  et al. 2013), the phenomenon of 

chattering (which is the implied  nature of the control of the discontinuous signal) is a 

problem; therefore, there is some uncertainty about this approach (Mihoub, et al. 2010, 

Takhmar, et al. 2012).  

 

The development of the sliding mode control system (SMCS) has addressed the main 

obstacle posed by the phenomenon by the use of CSMC. Although the implementation 

of modern SMC has been used to reduce the effect of chattering, most of these methods 

have weaknesses which emerge in the system output. As a result the harmful chattering 

that accompanies the conventional sliding mode control has become the focus of a great 

deal of attention. There are different types of chattering in sliding mode controllers, but  
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this thesis considers only those that can be analysed and addressed as other types may 

be either harmless or irremediable. 

 

1.2 Problem Statement 

 

There are several approaches to reduce the phenomenon of chattering: for example, 

the boundary layer method (BLM), the observe method, two-dimensional vector 

control, the time-varying switching gain (TVSG), the equivalent-control-dependent gain 

method,  the super-twisting method (STW), etc. (Goh, et al. 2003, Liu, et al. 2005, 

Cupertino, et al. 2008, Min et al. 2008, Ming, et al. 2010, Zaeri, et al. 2012). These 

methods have disadvantages such as a reduction in the accuracy of the control system, 

and may be ineffective in the presence of an external load, high level measurement 

noise (HLMN), parameter system variation, and uncertain systems. As a result, reducing 

the phenomenon (chattering) may yield weaknesses in other places. Those methods 

(STW and BLM) lead, however, to weak control signals because the small control 

signal value reduces the effect of the chattering phenomenon (Yang,  et al. 2008, Ming,  

et al. 2010, Ferreira,  et al. 2011, Loukianov,  et al. 2011, Zaltni and Abdelkrim 2011, 

Zhiyu, Gang et al. 2011, Aghababa and Akbari 2012, Al‐Hadithi, et al. 2013, Chena, 

Yangb et al. 2013). Therefore, the most important of the problem statements associated 

with the use of SMC is as follows: 

A small time constant of the system, finite sampling rate in digital sliding mode 

controller and fast dynamic, which was neglected in the ideal model, causes the 

chattering phenomenon in sliding mode controllers (Bartolini, et al. 2000, Dal and 

Teodorescu 2011).  
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As is it well known the appropriate gain of a sliding controller may ensure the 

stability of the system; however, this is accompanied by the emergence of the chattering 

phenomenon. In addition most controller systems suffer from a loss of stability when 

exposed to external disturbance, high level measurement noise (HLMN) and external 

loads and variations in the system parameters (Spong and Vidyasagar 1987).  

 

The majority of the offered solutions decrease the value of the gain in order to reduce 

the chattering phenomenon but the main problem when the system is close to the 

equilibrium point is that it is possible to lose stability because of the reduction in the 

amount of gain value. The decrease of gain value (control signal value) of the sliding 

mode controller in order to reduce the chattering phenomenon has disadvantages for this 

procedure (Xu, et al. 2004), which lead the trajectory of system states leave the sliding 

line (Zhao and Jiang 1998). As a result, the controller approach is largely unable to 

compensate fully for the disturbance. Traditional SMC still provides the closed-loop 

system with certain characteristics to reduce the influence of external disturbances; 

however, it is not absolutely foolproof. 

 

Accordingly, a novel approach is needed for designing a sliding mode with state 

feedback controller (SMSFC) to overcome the most serious weakness of SMC, the 

chattering phenomenon. The removal of chattering, however, requires precise selection 

of the gain value to maintain the properties of the sliding mode controller the use of 

some features of the system itself (property convergence of states in the stable system) 

in which the states of the system own the property of convergence. 
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