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Sistem Pengecaman Emosi Bukan Linear Bagi ECG Dan EMG  

Abstrak 

Tesis ini memberi tumpuan dalam analisis algoritma linear yang berbeza untuk 

mendapatkan maklumat emosi yang hadir dalam dua isyarat hayat iaitu 

Elektrokardiogram (ECG) dan Electromyogram (EMG). Pengecaman emosi adalah 

salah satu bidang penyelidikan yang muncul dalam interaksi manusia komputer (HCI) 

dan telah digunakan secara meluas dalam aplikasi seperti e-pembelajaran, bilik darjah 

pintar, aplikasi perubatan untuk pesakit dengan autisme, penyakit Parkinson dan lain-

lain. Enam status emosi asas (bahagia, sedih, takut, kejut jijik dan neutral) didorong 

dalam enam puluh orang subjek melalui rangsangan dengar-lihat. Emosi kemarahan 

diabaikan sebagai hasil daripada kajian yang dijalankan untuk mengenal pasti klip video 

emosi yang boleh menimbulkan emosi sasaran dengan cara yang lebih baik. Isyarat 

ECG dan EMG telah dipra-proses untuk menghapuskan bunyi yang berlaku akibat 

gangguan talian kuasa dan kekerapan yang tinggi. Kompleks QRS kemudian diterbitkan 

dari isyarat ECG dengan menggunakan algoritma berasaskan derivatif. Isyarat EMG 

telah dilicinkan dan trend itu disingkirkan. Kekerapan emosi telah dikenal pasti dengan 

pengesahan ciri-ciri statistik konvensional yang digunakan untuk aplikasi pengecaman 

emosi menggunakan analisis varians (ANOVA) pada tahap kekerapan berbeza. Ciri-ciri 

emosi yang diekstrak daripada QRS kompleks dan isyarat EMG yang dikenalpasti julat 

frekuensi emosinya telah diklasifikasikan menggunakan empat pengelas (Tree regresi, 

naif Bayes, jiran K-terdekat (KNN) dan kabur K-paling hampir Neighbor (FKNN)). 

Statistik Perintah Tinggi (HOS) dan ciri-ciri bukan linear diperoleh daripada isyarat 

yang ditapis dan isyarat yang diproses oleh Hilbert Huang Transform (HHT). Satu 

sistem hibrid yang menggantikan HHT oleh Fourier Transform diskret (DFT) kepada 

isyarat yang terurai dan dibina semula oleh penguraian Mode Empirical (EMD) telah 

dicadangkan. Kaedah berasaskan DFT memberi prestasi yang lebih baik dalam kes 

ECG manakala prestasi HHT lebih baik dalam kes isyarat EMG. Ciri-ciri bukan linear, 

Hurst telah diekstrak daripada isyarat tertapis menggunakan dua kaedah iaitu Statistik 

Julat Skala Berulang (RRS) dan Analisis Varian Terhingga (FVA). Kaedah baru seperti 

RRS berasaskan kepencongan, RRS berasaskan kurtosis, FVA berasaskan kepencongan 

dan berasaskan FVA kurtosis telah dicadangkan untuk pengkomputeran Hurst dengan 

menggabungkan HOS dengan kaedah tradisional. Ciri-ciri yang diperoleh melalui 

semua kaedah tersebut didapati signifikan secara statistic (p <0.01). Kaedah FVA 

berasaskan kurtosis memberi  prestasi yang lebih baik bagi kedua-dua ECG dan isyarat 

EMG dengan ketepatan, masing-masing 78% dan 62%. Satu sistem yang 

menggabungkan kedua-dua ECG dan isyarat EMG diperolehi dengan menggabungkan 

ciri-ciri yang menggunakan analisis komponen utama (PCA) dan skala pelbagai dimensi 

(MDS). Analisis komponen utama (PCA) digunakan pada semua ciri-ciri Hurst yang 

diperolehi menggunakan FVA untuk kedua-dua isyarat dan ini menyebabkan ketepatan 

yang lebih baik daripada 82.54%.  
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Non-linear Human Emotion Recognition using ECG and EMG 

Abstract 

This thesis focuses on analyzing different nonlinear algorithms to capture the emotional 

information present in two bio-signals namely Electrocardiogram (ECG) and 

Electromyogram (EMG). Emotion recognition is one of the emerging research areas in 

human computer interaction (HCI) and has been widely used in applications such as e-

learning, smart classrooms, medical applications for patients with autism, Parkinson’s 

disease etc., Five basic emotional states (happiness, sadness, fear, surprise and disgust) 

and neutral signal was induced in sixty subjects by means of audio-visual stimuli. The 

emotion anger was omitted as a result of the pilot study conducted to identify the 

emotional video clips that could elicit the target emotions in a better way.  ECG and 

EMG signals were pre-processed to eliminate noises that occur due to power line 

interference and high frequency.QRS complex was then derived from the ECG signals 

by using a derivative based algorithm. The EMG signals were smoothed and the trend 

was removed. The emotional frequency was identified by validating the conventional 

statistical features used for emotion recognition applications using analysis of variance 

(ANOVA) at different frequency levels.  The emotional features extracted from QRS 

complex and EMG signals at the identified emotional frequency range was classified 

using four classifiers (Regression Tree, Naïve Bayes, K-nearest neighbor (KNN) and 

Fuzzy K-Nearest Neighbor (FKNN)). Statistical, Higher Order Statistical (HOS) and 

non-linear features were obtained from the filtered signals and the signals processed by 

Hilbert Huang Transform (HHT). A hybrid system replacing Hilbert Transform by 

Discrete Fourier Transform (DFT) to the signal decomposed and reconstructed by 

Empirical Mode Decomposition (EMD) was proposed. DFT based method performed 

better in case of ECG whereas HHT performed better in case of EMG signals.  The non-

linear feature Hurst was extracted from the filtered signals using two methods namely 

Rescaled Range Statistics (RRS) and Finite Variance Analysis (FVA).  New methods 

such as Skewness based RRS, Kurtosis based RRS, Skewness based FVA and Kurtosis 

based FVA were proposed for computing Hurst by combining HOS with the traditional 

methods. The features achieved in all the methods were found to be statistically 

significant (p<0.01). Kurtosis based FVA method performed better for both ECG and 

EMG signals with an accuracy of 78% and 62% respectively. A system that combines 

both ECG and EMG signals was obtained by combining the features using principal 

component analysis (PCA) and multi dimensional scaling (MDS). Principal component 

analysis (PCA) applied on all the Hurst features derived using FVA for both the signals 

resulted in an improved accuracy of 82.54%.  
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 CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

Emotional intelligence consists of the ability to recognize and express emotions, 

coupled with the ability to regulate these emotions and harness them for useful 

purposes. Emotions are considered as a basic component of intelligence and have been 

argued to be a better predictor for measuring the aspects of success in life. It is 

important for intelligent functioning and it interacts with thinking in ways that are not 

easily noticeable (Picard, Vyzas, & Healey, 2001). The increase in deployment of 

adaptive computer systems makes it important for machines to understand human 

emotions. Equipping machines with a little amount of emotional intelligence creates 

mutual empathy and improves the relationship between human and machines. It also 

provides meaningful and easy verbal and non-verbal communication (Jonghwa & Ande, 

2008). Emotional ability is found to be an essential factor for the next generation robots 

and in applications such as intelligent rooms  and affective tutoring (Rigas, Katsis, 

Ganiatsas, & Fotiadis, 2007). Hence, equipping the  machines with selective emotional 

skills will make them appear as intelligent when they respond and adapt to the user’s 

affective response (Picard, et al., 2001). This human machine interaction through 

affective computing might be useful in several medical applications such as assisting 

elderly people, new born children and patients with intellectual disabilities, autism or 

Parkinson’s disease who will not be able to express their emotions explicitly (Bal et al.; 

Martínez et al., 2010).  
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An emotionally intelligent system should have a two-fold capability to 

understand the user’s emotion and appropriately respond to it (Rani & Sarkar, 2006). In 

this thesis, primary emphasis is given on improving the ability of computers and 

machines to understand human emotions. Most of the intelligent machine interfaces 

developed till now are based on the audio-visual channels of emotion expression such as 

facial action, speech or gestures (Ang et al., 2004; Kessous, Castellano, & Caridakis, 

2009; S. Koelstra et al., 2012; Morishima, 2000). Though numerous engineering based 

research studies have been published on these behavior-based models, they rely on the 

explicit expression of emotions by the subject. While facial actions tend to be the most 

visible form of emotion expression, they are the most easily controlled with large 

dependence on social situations (Picard, et al., 2001). Similarly, voice and other external 

modes of expression can be easily controlled or suppressed depending on the external 

circumstances. Such unexpressed emotions, socially masked emotions and emotions 

expressed differently (e.g. an angry person may smile) cannot be tracked by these 

behaviour-based modalities. The true emotional changes remain internal and are not 

detected by the audio-visual recording system (Jonghwa & Ande, 2008). Furthermore, 

recognition of emotions using these modalities are influenced by a number of external 

factors such as lighting conditions, auditory noise and accessories like glasses (Apolloni 

et al., 2007). 

The expression of an emotion occurs as a result of physiological changes in the 

Autonomic Nervous System (ANS). For e.g. the muscle tension in the face give rise to 

facial actions (Picard, et al., 2001). Researchers have showed significant differences 

between the emotional states using different physiological signals such as 

electroencephalogram (EEG), electrocardiogram (ECG), electromyogram (EMG), skin 

conductance (SC), skin temperature (ST) and blood volume pulse (BVP). These 
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physiological signals, being an activity of the ANS reflects the inherent state of the 

person which makes the suppression of emotions or social masking impossible. It is also 

a natural means of emotion recognition providing an opportunity to track minute 

emotional changes that are unseen by the natural eye (Rani & Sarkar, 2006).  

Physiological signal based emotion recognition is challenging because of the 

complex nature of physiological signals and subjective nature of emotional states. Some 

of the challenges in physiological signals based emotion recognition are, 

 

 Physiological sensing is invasive as it involves physical contact with the 

person. However with the advancement in technology such as conductive 

rubber electrodes, fabric electrodes and wearable computers, physiological 

sensing can be made easier without any visible or awkward sensing systems 

(André et al., 2004; Li & Chen, 2006; Picard, et al., 2001). 

 Physiological signals cannot be manipulated. Hence the different emotional 

states have to be elicited internally in the subject for proper data acquisition. 

Furthermore, emotions are subjective. All the subjects may not have the 

same emotional experience for the given emotional stimulus. Also, the same 

subject might experience a different emotion for the same emotional 

stimulus at a different instant of time. Hence, estimating the human 

emotional states is purely a subjective factor and finding a generalized 

solution for assessing the emotional states is challenging.  

 Annotation of physiological signals in emotion research is difficult. 

Modalities such as speech or image (facial actions and gestures) signals can 

be heard or seen respectively to understand the underlying emotional states 

by any person. However, the one dimensional waveform of physiological 
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signals (changes of signal of amplitude over time) does not convey any 

information to the user. Hence, data labeling should be done with great care 

(Jonghwa & Ande, 2008; Picard, et al., 2001). 

 Though this research is being active over the past two decades, so far there 

hasn’t been any standardization in key areas such as emotional model, 

stimulus, physiological measures, features, pattern recognition and 

classification. An agreement on some of the conventions and guided 

principles would facilitate the integration of knowledge and expertise in the 

research community (Arroyo-Palacious & Romano, 2008). 

 

Despite the challenges involved, the ability to capture the underlying and true 

emotional state of the subject makes this method more important. Researchers have 

worked either on only one physiological signal (Unimodal) or on a combination of 

physiological signals (Multimodal) to capture the emotional information (Agrafioti, 

Hatzinakos, & Anderson, 2012; Jonghwa & Ande, 2008; C. Maaoui, Pruski, & Abdat, 

2008; Picard, et al., 2001; Rattanyu, Mizukawa, & Jacko, 2011). Most of the earlier 

works have focused on analyzing heart (ECG) and muscle (EMG) activities to assess 

the underlying emotional state of the person. These signals are worked independently or 

in combination with other physiological signals like BVP, GSR, SC and Respiration.  It 

should also be noted that some of the works on psychophysiology are user dependent 

and some others are user independent.  The Unimodal system developed using 

ECG signals has achieved a maximum accuracy of 78% for classifying two arousal 

stages (positive and negative arousal) (Agrafioti, et al., 2012). In multimodal analysis, 

the researchers managed to obtain a maximum mean classification rate of 95% and 70% 

on recognizing four emotions (joy, anger, sadness, pleasure) in an user dependant and 
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