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Ramalan Serangan Jantung Secara Mendadak Berdasarkan Isyarat 
Elektrokardiogram Menggunakan Kaedah Pembelajaran Mesin 

Tesis ini memberi tumpuan kepada peramalan serangan jantung secara mendadak 
(SCA) dengan menggunakan kadar jantung kebolehubahan (HRV) dan isyarat 
elektrokardiogram (ECG). Kematian jantung secara mendadak (SCD) adalah penyakit 
jantung kritikal yang menyumbang kepada jutaan kematian setiap tahun. SCD berlaku 
apabila SCA tidak dirawat lebih daripada 10 minit. Oleh itu, dengan meramalkan 
kejadian SCA sebelum ia bermula atau mengenalpasti pesakit yang berisiko tinggi 
kepada SCA boleh menyelamatkan jutaan nyawa. Dua pangkalan data antarabangsa, 
iaitu MIT/BIH Sudden Cardiac Death (20 subjek) dan MIT/BIH Normal Sinus Rhythm 
(18 subjek) telah digunakan dalam penyelidikan ini. Kedua-dua pangkalan data ini 
mempunyai dua penunjuk ECG untuk merakam pesakit dalam keadaan terlentang. Di 
samping itu, isyarat HRV juga turut disediakan dalam pangkalan data ini. Dua segmen 
dari isyarat HRV telah digunakan dalam kajian ini. Segmen pertama adalah lima minit 
panjang dan ia telah disegmen dua minit sebelum permulaan ‘ventricular fibrillation’ 
(VF). Manakala, segmen kedua pula satu minit panjang dan ia disegmen lima minit 
sebelum permulaan VF.  Untuk subjek normal, segmen ini telah di ambil secara rawak. 
Selain itu, segmen ini dilakukan masing-masing untuk mencapai dua dan lima minit 
ramalan kejadian SCA Kedua-dua segmen isyarat HRV ini telah dipra-proses untuk 
menyingkir and menginterpolasi degupan ektopik. Seterusnya, ciri-ciri masa dan bukan 
linear telah diekstrak. Selepas itu, isyarat HRV telah disingkirkan alirannya dan ciri-ciri 
frekuensi telah diekstrak. Kaedah pemilihan ciri-ciri adalah berbeza untuk setiap masa 
segmen. Untuk isyarat HRV lima minit, pemilihan ciri kaedah pemilihan kehadapan 
berterusan (SFS) telah digunakan manakala dalam analisis HRV satu minit, pemilihan 
ciri-ciri berdasarkan analisis komponen utama (PCA) dan pemilihan ciri-ciri 
berdasarkan korelasi (CFS) telah digunakan di samping SFS. Ciri-ciri optimum yang 
dipilih menggunakan kaedah-kaedah tadi telah dianalisa untuk kepentingan statistiknya 
menggunakan penganalisa varians (ANOVA). Seterusnya, empat pengelas 
pembelajaran mesin (mesin dorongan vektor (SVM), rangkain neural pembarangkalian 
(PNN), jiran K-terdekat (KNN) dan pokok klasifikasi) telah digunakan untuk peramalan 
dalam kedua-dua analisis.  Manakala, satu minit EKG, lima minit sebelum permulaan 
VF telah disegmen dari pangkalan data. Kemudian, ia telah dipra-proses untuk 
menyingkirkan bunyi yang berlaku akibat ganguan talian kuasa dan frekuensi tinggi. 
Kaedah penyingkiran bunyi novel berdasarkan penjelmaan Stockwell (ST) telah 
digunakan untuk menyingkirkan bunyi bertenaga sifar. Seterusnya, segmen dari 
gelombang R sampai penghujung gelombang T (R-T

ABSTRAK 

end) telah diekstrak dari setiap 
rakaman ECG. Dua kumpulan ciri-ciri (G1 dan G2) telah diekstrak dari segmen ECG 
yang novel ini. G1 terdiri daripada empat ciri-ciri bukan linear (eksponen Hurst, 
eksponen Lyapunov terbesar, penghampiran entropi dan entropi sampel) manakala G2 
terdiri daripada empat ciri-ciri statistic perintah tinggi (purata, varians, ‘skewness’ dan 
kurtosis) dan satu ciri yang dicadang dalam tesis ini, sudut ketinggian/kemurungan 
(AED). Ciri AED yang dicadangkan ini didapati penting secara statistik (ANOVA) 
dengan p < 0.05. Dalam analisa ini, tiga pengelas (SVM, kluster penolakan kabur (SFC) 
dan pengelas neuro-kabur (NFC)) telah digunakan untuk meramal SCA. Melalui 
analisa-analisa ini, peramalan SCA dua minit dan lima minit dengan ketepatan 
maksimum 97.37% telah tercapai mengunakan isyarat HRV. Tambahan pula, ketepatan 
100% tercapai dalam penganalisaan satu minit ECG. Ciri AED yang dicadang mencapai 
ketepatan 86.84% dalam peramalan. 
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Electrocardiogram Signal Based Sudden Cardiac Arrest Prediction Using Machine 
Learning Approaches 

This thesis focuses on predicting occurrence of imminent sudden cardiac arrest (SCA) 
using heart rate variability (HRV) and electrocardiogram (ECG) signals. Sudden cardiac 
death (SCD) is a devastating cardiovascular disease that responsible for millions of 
deaths per year. SCD occurs when SCA went untreated for more than 10 minutes. 
Hence, predicting imminent SCA before its occurrence or identification of high-risk 
patients for SCD can save millions of lives. Two international databases, namely 
MIT/BIH Sudden Cardiac Death database (20 subjects) and MIT/BIH Normal Sinus 
Rhythm database (18 subjects) were used in this work. Both databases have two leads 
ECG recording of patients in supine condition. In addition, HRV signals are provided in 
these databases. Two segments of HRV signals were used in this work. First segment is 
five minutes long and it was segmented two minutes before the onset of ventricular 
fibrillation (VF). Consequently, second segment is one minute long and it was 
segmented five minutes before the onset of VF. As for normal subjects, these 
segmentations were done at random intervals. Besides, these segmentations were done 
to achieve two and five minute prediction of imminent SCA, respectively. Both HRV 
signal segments were pre-processed to remove and interpolate ectopic beats. Then, time 
and non-linear domain features were extracted. Next, HRV signals were detrended and 
frequency domain features were extracted. Feature selection method is different for each 
time segment. For features of five minutes HRV signal, sequential forward selection 
(SFS) was used to select optimal features while in one minute HRV analysis, feature 
selection using principal component analysis (PCA) and correlation based feature 
selection (CFS) were experimented in addition to SFS. Optimal features selected using 
each methods were analyzed for its statistical significance using analysis of variance 
(ANOVA) test. Based on literature, four machine learning classifiers (support vector 
machine (SVM), probabilistic neural network (PNN), K-nearest neighbour (KNN) and 
classification tree (CTree)) were used for prediction in both analyses. In contrast, one 
minute ECG, which is five minutes before the onset of VF, was extracted from the 
database. Then, it was pre-processed to eliminate power line interference and high 
frequency noises. S-Transform (ST) based novel noise removal method was used for 
removing zero energy noises. Then, segment from R wave until the end of T wave (R-
T

ABSTRACT 

end) was extracted from each ECG trace. Two groups of features (G1 and G2) were 
extracted from this novel ECG segment. G1 consists of four non-linear features (Hurst 
exponent, largest Lyapunov exponent, approximate entropy and sample entropy) while 
G2 consists of four higher order statistic features (mean, variance, skewness and 
kurtosis) and proposed angle of elevation/depression (AED) feature. The proposed AED 
feature is statistically significant (ANOVA) with p < 0.05. In this analysis, three 
classifiers (SVM, subtractive fuzzy clustering (SFC) and neuro-fuzzy classifier (NFC)) 
were used for SCA prediction. Through these analyses, maximum prediction accuracy 
of 97.37% was achieved in both two and five minutes SCA prediction using HRV 
signals. In addition, 100% prediction accuracy was produced in one-minute ECG 
analysis. The proposed AED feature produced 86.84% prediction accuracy. 
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CHAPTER 1 

 

INTRODUCTION 

1.1 Research Background 

Early prognosis of fatal heart diseases (such as myocardial infarction, coronary 

artery disease and hypertrophy cardiomyopathy) is one of the crucial problems faced by 

modern society.  These fatal cardiac diseases contribute millions of deaths worldwide in 

both developing and developed countries. Among these diseases, sudden cardiac death 

(SCD) is the most severe cardiovascular disease (CVD) since it alone contributes to 

almost 50% of cardiovascular mortalities (Heikki, Castellanos, & Myerburg, 2001); it is 

a major cause for 20% of total mortality in industrialized world (Wellens et al., 2014). 

Besides, patients who had survived SCD with the help of resuscitation where re-

hospitalized within one year and 40% of them died within two years of period (Unit, 

2013). Cardiac arrhythmias were found to contribute 90% of SCD (Martínez-Rubio, 

Bayés-Genís, Guindo, & Bayés, 1999). There are various definitions used by 

researchers to classify a cardiovascular death as SCD. However, European Society of 

Cardiology Task Force on Sudden Cardiac Death has suggested the definition of SCD 

as: “natural death due to cardiac causes, heralded by abrupt loss of consciousness within 

one hour of the onset of acute symptoms; preexisting heart disease may have been 

known to be present, but the time and the mode of death are unexpected” (Priori et al., 

2001).  

Researchers have proposed several SCD risk factors over the past several 

decades. These risk factors often categorized into three groups for sake of simplicity 

namely, substrate, modulator and trigger (Straus, 2005). Factors that damage the normal 
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structure of the myocardium are known as substrate. Substrates are the more stable risk 

factors among these three groups. The effects left by substrate factors (heart failure, 

myocardial infarction) are permanent thus; it creates a surrounding in which ventricular 

fibrillation (VF) can readily occur (Myerburg, 1997). Besides, risk factor that 

temporarily increases the risk of SCD such as drugs, plaque rupture and electrolyte 

disturbances are known as modulators. Finally, triggers are the critically timed 

premature stimulus such as ventricular extra systole that triggers the VF.  

In general, physiological signals based SCD risk markers are divided into two 

groups namely, first group is based on electrocardiogram (ECG) signals and second 

group contains rest of related risk markers. High resting heart rate (> 75 bpm) (bpm: 

beats per minute), limited heart rate increase during stress test (< 89 bpm) and sluggish 

heart rate recovery after stress test (< 25 bpm) are reported as SCD risk markers in 

current clinical practice (Jouven, Empana, Schwartz, & Desnos, 2005). Besides, 

corrected QT interval (QTc)>450 ms in men and >470 ms in women is associated with 

three-fold risk of SCD (Straus et al., 2006). In addition, prolonged T peak-T end 

duration in ECG lead V5 is considered as one of the SCD risk marker (Panikkath et al., 

2011). Furthermore, T wave inversion, prolonged QRS duration and wide QRST angle 

were used to predict SCD (Tikkanen, Anttonen, & Juhani, 2009). Besides, various 

features from RR interval of normal and heart disease patients proved to be a significant 

SCD predictor (Ebrahimzadeh & Pooyan, 2011).  

The impact of SCD in various populations is shown in Table 1.1. Current 

medical practice is to prioritize group 3 patients since they are the most obvious 

candidates or victims for SCD. However, percentage of fatality due to SCD in group 3 

is merely 13% of total SCD mortalities compared to 45% and 40% from group 1 and 2. 

 

 

 

 

 

 

 

©
 T

his 
ite

m
 is

 p
ro

te
ct

ed b
y o

rig
in

al
 co

pyr
igh

t 



 

3 

This led the researchers to investigate variety of methods to identify high-risk individual 

from all groups. 

Table 1.1: Four groups of people that contribute to SCD and their current predictability 

status (Wellens et al., 2014) 

Groups Description Contribution 

to all SCD (%) 

SCD 

Predictability 

1 Not diagnosed with heart disease 45 Poor 

2 With history of heart disease: LVEF > 

40% 

40 Limited 

3 With history of heart disease: LVEF < 

40% 

13 Possible 

4 Arrhythmic disease by genetic substrate 2 Limited 
LVEF=Left Ventricular Ejection Fraction 

There are some specific risk markers being correlated to group two, three and 

four patients in Table 1.1. Heart rate turbulence (HRT), deceleration capacity and 

microvolt T wave alternans (MTWA) produced high specificity in group 2 patients 

(Bauer et al., 2009). MTWA also found to have high negative predictive value (NPV) in 

group 3 patients (Merchant et al., 2012). Finally, in group 4 patients, specifically for 

long QT (delayed Q wave and T wave interval) syndrome and Brugada syndrome, RR 

interval and QT interval (interval from Q wave to T wave) were established as risk 

factors (Moss et al., 1991).  

 There are numerous non-ECG risk markers proposed by researcher for SCD 

stratification. Left ventricular ejection fraction (LVEF) which is less than 40% is 

considered as a threshold to separate low and high-risk SCD patients (Rouleau, Talajic, 

Sussex, Potvin, & Warnica, 1996). Hence, LVEF became the most important clinical 

parameter in identifying high-risk patients. Besides, cardiovascular disease risk scores 

such as Framingham and QRISK (since it is based on QResearch database) were used to 

calculate the probability of generating cardiac events using age, gender, low-density 

lipoprotein (LDL) cholesterol, body mass index (BMI) and blood pressure (BP) (Laslett 
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et al., 2012). Other than that, classification of patients using New York heart association 

(NYHA) functional class (I, II, III and IV) is used to prioritize high-risk groups. Class 

IV patients are diagnosed with severe heart dysfunctions while Class I is patients with 

very mild heart dysfunctions. Furthermore, electrophysiological study (EPS), an 

invasive method is used to assess the electrical conduction system of the heart. Patients 

with positive EPS that implanted with implantable cardioverter defibrillator (ICD) are 

found to be less susceptible to SCD (Buxton et al., 1999). Besides, there are nuclear 

studies and cardiac angiography that are used for SCD and other cardiovascular disease 

assessments. 

 Both these groups (ECG and non-ECG) of risk markers have several limitations 

as follow. Among the ECG based risk markers, HRT and MTWA were found to be 

more promising in identifying high-risk SCD patients. Yet, these two parameters cannot 

be assessed on patients with atrial fibrillation (AF) (which by itself act as a risk 

predictor for SCD) (Wellens et al., 2014). Besides, there are lack of dynamic risk 

assessment studies over time for these ECG risk factors. In addition, specific risk 

marker for SCD based on ECG is yet to be discovered. Whereas, LVEF and NYHA 

functional classes are the widely used non-ECG based risk marker for SCD (Wellens et 

al., 2014). However, the sensitivity and specificity of these risk factors are considered 

marginal in medical point of view. 

 Drugs and ICDs are used in current medical practice as preventative measure of 

SCD. Drugs such as Beta-blockers are used to reduce the occurrence of ventricular 

ectopic beats (VEB), thus reduce the probability of SCD (Ellison et al., 2002). Besides, 

the safety and efficacy of the drug makes it first choice in protecting patients against 

SCD. Furthermore, amiodarone blocks the potassium repolarization and increases the 

re-entry wavelength, which found to oppose the occurrence of ventricular arrhythmias. 
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