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Pengubahsuaian Normalisasi lluminasi Retinex dalam Pendekatan Mengesan
Kesakitan pada Bayi

ABSTRAK

Kesakitan bayi dipantau di dalam Neonatal Jagaan Unit Rapi (NICU). Kesakitan pada
bavi dapat dikesan dengan mengkaji perubahan mimik muka mereka Walaupun
keputusan yang diperolehi amat memberangsangkan, ianya tdak cukup dalam aspek
gangguan dan perubahan iluminasi. Penyaring Penyesuai Median (AMF) untuk menapis
gangguan telah dicadangkan Purata dan vanian nilai medi igunakan untuk
menghasilkan pemberat vang bersesuaian dengan imej mengg@d 3x3,5x5 or 7x7
telah digunakan. Keputusan kuantitif seperti Puncak Isyarat\kgpdda nisbah gangguan
b Imej (IEF) dan Indeks

(PSNR). Purata Kuasa Dua Ralat (MSE), Faktor Penin
Persamaan Purata Struktur (MSSIM). Keputusan pu unjukkan peningkatan
dengan 40.63 db untuk PSNR, 6.01 untuk MSE, 09 untuk IEF dan 097 untuk
MSSIM. Dalam kajian ini juga iluminasi no i baru vang dikenali sebagai
Pengubahsuaian Retinex Teknik (MRT) unt \mengesan muka dalam perbezaan
iluminasi dengan menggabungkan nonmlisg?}t togram dan gabungan kombinasi cin
telah dicadangkan. Kaedah im telah dib%gknn dengan kaedah seperti (SSR) Skala
Tunggal Retinex, (HOMO) Kaedah %?[?c’ rphic, (SSQ) Skala Tunggal Nisbah Imej,
Gross dan Brajovic Teknik (GBT T) Kaedah DCT, (GRF) Tekmk perubahan
muka, (TT) Kaedah Tan dan Tri d Teknmk Besar dan Kecil (LSSF) untuk menilai
kecekapannya Kaedah mni tid merlukan maklumat luaran tentang bentuk muka dan
iluminasi malahan boleh d@ .an pada stiap ime) secara berasingan. Kajian dyjalankan
menggunakan imej COP . Keputusan vang ditunjukkan amat memberangsangkan.
Pengambilan penciria{l? ggal seperti Analisis Komponen Prinsipal (PCA), Corak
Tempatan Dedua (BP) dan Transformasi Sudut Berasingan (DCT) menghasilkan
keputusan vang pk. Walaubagaimanapun gabungan ketiga-tiga pengambilan pencirian
ini menghasi ketepatan yang amat memberangsangkan. Kaedah MRT bersama
gabungan gépgambilan pencirian mendapat keputusan >90% pada sepuluh klasifikasi
seperti Terdekat K (k-NN), Fuzi Jiran Terdekat K (Fuzzy k-NN), Pembezaan
Anghsjs “Lurus (LDA), Masukan Terus Rangkaian Neural (FFNN), Kemugkinan

ian Neural (PNN), Regresi Umum Rangkaian Neural (GRNN), Mesin Pembantu
Vektor Lurus (SVMLIN), Mesin Pembantu Vektor Fungsi Asas Radial (SVMRBF),
Mesin Pembantu Vektor Pelbagai Lapisan (SVMMLP) dan Mesin Pembantu Vektor
polinomial (SVMPOL) dalam beberapa pengukuran prestasi seperti sensitivity,
spesifikasi, ketepatan, luas bawah lengkung (AUC), Cohen's kappa (k), kepersisan,
Pegukur F dan masa proses.

xvi




A Modified Retinex HNlumination Normalization Approach for Infant Pain
Recognition System

ABSTRACT

Pains in newbomn babies are monitored in a Neonatal Intensive Care Unit (NICU) for
medical treatment. Pain in newboms can be detected by studying their facial appearance.
Even though the outcome is acceptable, it is not adequately vigorous to be used in
unpredictable, non-ideal situations such as noise and varyving illumination environment.
First, to improve the noise cancellation robustness an adaptive filter (AMF) is
proposed. Mean and variance of median values are selected l@ﬂe a weight for
each window part of the images such as 3x3, 5x5 or 7x7. V linear and nonlinear
filters are adopted to eliminate the noise in the images. @limﬁve comparisons are
performed between these filters with our AMF in Ierrn§9 eak Signal-to-Noise Ratio
(PSNR), Mean Square Error (MSE), Image En ement Factor (IEF) and Mean
Structural SIMilarity (MSSIM) Index. The aver: ults show improvement in terms
of 40.63 db for PSNR, 6.01 for MSE, 258.09 o and 0.97 for MSSIM respectively.
In this work a novel method of illumination jpfy@Tant normalization known as Modified
Retinex Normalization (MRT) for prepr g of infant face recognition is proposed.
This is based on a modified retinex m t combines with histogram normalization
for filtening the illumination im’arib. The proposed method is compared to other
methods like Single scale Retinen(@k)_ Homomorphic method (HOMO), Single Scale
Self Quotient Image (SSQ),Awoss and Brajovic Technique (GBT), DCT-Based
Normalization (DCT), Gr aces-based normalization techmque (GRF), Tan and
Triggs normalization techfique (TT), and Large-and small-scale features normalization
technique (LSSF) fo;& ation with Infant Classification of Pain Expressions (COPE)
database Several expdiments were performed on COPE databases Single PCA, LBP
and DCT feature &draction information yielded a good recognition result. However, by
summing th ee, it gives more robustness 1o noise and illumination classification
rate bec ¢ sum rule was the most resilient to estimate errors and gives higher than
90% 1es of pain and no pain detection. The new illumination normalization and
coﬁon of features gives higher results of more than 90% on five different
cl ers with various algorithms such as k-nearest neighbors (k-NN), Fuzzy k-nearest
neighbors (FKNN), Linear Discriminat Analysis (LDA), Feed Forward Neural Network
(FFNN), Probabilistic Neural Network (PNN), General regression Neural Network
(GRNN), SVM Linear kemel (SVMLIN), SVM RBF kernel (SVMRBF), SVM MLP
kernel (SVMMLP) and SVM Polynomial kernel (SVMPOL) with different performance
measurement such as Sensitivity, Specificity, Accuracy, Area under Curve (AUC),
Cohen's kappa (k), Precession , F-Measure and Time Consumption .
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CHAPTER 1|

INTRODUCTION

1.1 Project Background

Newborn babies are monitored in a Neonatal Intensive. @ Unit (NICU) for
medical treatment include perinatal asphyxia, major blrQQdefects sepsis, neonatal,
and Infant respiratory distress syndrome due to lmryg\&{t} of the lungs. These infants
are nurtured in an incubator, where their \*ital.\. Q function indicators such as blood
pressure, temperature, heart rate, oxygen Q@tmranon and respiration are continuously
observed. To avoid disturbed sleep @sed by bright lights which leads to anxiety, the
incubator i1s covered with a bla@gl to reduce the intensity of light. The drawback of this
practice is that visual ms@c?on of the infant throughout most of the time is impaired. In

other words, ache &@%lstrms cannot be assessed by observing crucial functions. There
are growing c{n%ms that early detection of pain and distress may be important for the

mi'anl}\@elopmeﬂl which prompts us to widen a model for an automated video

survs#flance system that can detect ache and distress in neonates.

Distress in newborns can be detected by studying their facial appearance (Grunau et
al.. 1987 Stevens et al, 1996; Chen et al, 2005). In particular, the appearance of the
mouth. evebrows and eyes are reported to be significant facial features for detecting the
occurrence of distress and ache. This has resulted in the development of scoring systems

to evaluate the intensity of distress, based on facial appearance and physiological




parameters. The scoring systems provide early signals to care takers when newborns

experience ache or distress, so proper actions can be taken in an instant.

So far, only one automatic video-surveillance system (Brahnam et al.. 2006:
Brahnam et al, 2007) for pain detection in newbom babies has been reported. In this
system, enlarged images of an infant are taken in diverse situations: using a painful
method (heel lance) and during other non-painful situations such as friction, crying.
resting and air stimulus. After manual rotation and scaling, pixel- classifiers, such
as Linear Discriminant Analysis and Support Vector Madliﬁ\%rmnam et al., 2006;
Brahnam et al., 2007; Martinez & Kak, 2004; Abdi, ZU(EJO%Tiere & Thioulouse, 2003)
were applied for sorting the facial expressions. E\f\{nﬁough the outcome is acceptable,
it believe that this is not adequately vigor@g\?g be used in unpredictable, non-ideal
situations such as under varving W%d illumination environment, where the
newborn’s face is partly covered I:gv%laslers or tubing.

&
&O

[llumination 1s o,n\eo&lhe basic characteristics of a visible surface and it provides
information forégw interpretation (Gao et al, 2003; Chen et al, 2000). Recent
developm@;zi\:lhis field have shown that there is room for improvements. Most of the
lrm@:gloface recognition algorithms are satisfactory under controlled conditions.
However, when dealing with performance degrading issues such as variation in pose,
noise, illumination, and facial expression, their accuracy greatly diminished (Gao et al.,
2003: Chen et al, 2000). As the performance of a face recognition technique is
significantly affected by various illumination and noise effects, illumination and noise

are known to be the key factors that play an important role in human face recognition

system design.

-
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To address this limitation, this dissertation proposed a distress detection scheme and
depicts a pilot method with the following properties: first, the identification of distress
will be based on analyzing the whole face region in an automated way. With this
information, the behavioral circumstances of the infant either in pain or normal can be
detected. Images of surrounding factors such as the visibility of plasters and tubes on
the infant are excluded in this work. However, other challenging circumstances, such as

the changes in noise and illumination environment, which characteristically lead to

suboptimal surroundings, need to be considered X
)
K\
Q\\
1.2 Problem Statement (JO
>
Y

Many issues hinder research efforts in UB((\:QQ of infant face recognition. Variation
exists in every imaging approaches, andéldmg fast, simple algorithms that are robust
to variation is difficult (Brahrmr(n}gal.. 2006; Brahnam et al., 2007). Categorizing the
variation may be helpful irb‘ﬂg/ development of effective face recognition algorithms
(Matthew, 2003). h;n%'&c sources of variation include identity, facial expression,
speech, gender Q/ age (Daugman, 1997). Extrinsic sources of variation include
viewing g@em pose changes, illumination (shading, color, self-shadowing), imaging
pro@é (resolution, focus, imaging noise), and other objects (occlusions, shadowing,

and indirect illumination).

These sources of variation may or may not hinder the recognition process depending
on the algorithm used. It is possible that the variation due to factors such as facial
expression, lighting, occlusions, noise and pose is larger than the vanation due 1o

identity (Daugman, 1997). That makes identification under such varying environments a




difficult task. However, human proficiency at face recognition (Hochberg et al., 1967)
has motivated enormous research in this area despite these challenges. Thus, this work
seeks to solve the problems of infant face recognition system in different noise levels

and illumination with new filter and new illumination normalization approach.
1.3  Objectives

The objectives of this research are as follows: \Q\,
1) To develop a new approach based on filter under varygfig tonditions of noise
level in preprocessing phase (JOQ
2) To develop a new illummation nom\a@on approach under varving
L] \ 3
conditions of illumination level. O’Q\

3) To determine the most salient discriminative features by adopting the

feature selection for opl@ng on the accuracy of the decision making
systems. ’&Q/
: .&O
4) To evaluate lh;?&rformance of the new illumination normalization method
N\
for deleﬁ itllumination invariant capability in terms of sensitivity,
X

spe@fily, accuracy, area under curve, Cohen’s kappa, precession, recall, [-

©'}easure and execution time under difTerent noise and illuminations levels.

1.4 Scope

As mentioned in the introduction, it seems not much attention is given to research
on monitoring of infants in Neonatal Intensive Care Units (NICU). This work may

answer many of the misconceived problems. In this work, one approach to Human




Computer Interface (HCI) for monitoring infant pain is presented. Most of the infants
represent their pain through their facial appearance, and hence monitoring the whole
body movement is not a viable solution. The facial appearance need to be monitored by
the nurses at selected intervals and reported to doctors for possible further treatments.
Detection of facial changes is very crucial for further treatment. This work is only
limited to the face from infant COPE database. The database of whole images in this
work only consists of upfront images and does not deal with different poses. Within this
work. only common features such as PCA, LBP and DCT ur\eo’sdopted. However,
different parameters and coefficient of features under diﬂ'ere&og mination levels and
noise are adopted. Salt and pepper noise is employed ébg than other noise because
this type of noise always appears in digital ,i:(o@\ﬁ and is mostly adopted as a
A
benchmark for filter performance evaluatimbfh?.oproposed filter is tested with various
quantitative measurements such as Pea@elgnal-to-Noise Ratio (PSNR), Mean Square
Error (MSE), Image Enha::cerg@ Factor (IEF) and Mean Structural SIMilarity
(MSSIM) Index. In this weSk,Q/selected noise and illumination levels on the face of
infant is investigated, g@n performance measurement such as Sensitivity, Specificity,
Accuracy, Area gader Curve (AUC), Cohen's kappa (k), Precession, F-Measure and
Time Co '{&“’0“ are measured to validate the proposed illumination normalization

O
lecl@h'u%.
1.5 Dissertation Outline
The chapters of this dissertation largely follow the order in which the work was

done. The scope and objective of the work is presented in this chapter. The second

chapter is a literature review encompassing most of infant monitoring research. This




