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Abstract. In general, various artificial neural network have been applied in many areas such as 

modelling, pattern recognition, signal processing, diagnostic and prognostic. In this paper, 

artificial neural network are used to detect and classify the white blood cell (WBC) inside the 

acute leukemia blood samples. There are 25 features have been extracted from segmented 

WBC, which consist of shape, color and texture based features. Then, it have been fed up as 

the neural network inputs for the classification process in order to classify the segmented 

regions into two classes either B or T. The training algorithm for MLP network is Levenberg-

Marquardt (LM). The MLP network achieves the highest testing accuracy of 96.99% for 4 

hidden nodes at state of 5 by using the overall 25 input features. Thus, MLP network trained by 

using LM algorithm is suitable for acute leukemia cells detection in blood sample.  

1.  Introduction 

Leukemia is a blood cancer, which can affect both children and adults. Acute leukemia can be 

divided into two types: Acute Lymphoblastic Leukemia (ALL) and Acute Myelogenous Leukemia 

(AML) [1]. It is wise to identify the types of leukemia early and rapidly assist the patients by giving 

appropriate treatments. In addition, the process to classify the type of leukemia is depending on the 

skills and experience of the hematologist. However, the manual microscopic examination has several 

drawbacks. Even for an expert, this traditional method can be very tedious and furthermore time-

consuming [2].  

  Several development of semi and automated detection system related to leukemia have been 

proposed. Shafique et.al [3] proposed blood detection that utilizes thresholding based on Zack 

algorithm and shape and color based features were extracted from the segmented white blood cell 

(WBC).It able to achieve accuracy of 93.70% by using support vector machine (SVM) in order to 

classify either normal or blast cells. Meanwhile, Asadi et.al used Backpropagation Neural Network to 

classify ALL and AML, which produced 86.66% of accuracy [4].  Rajpurohit et.al proposed various 

classifiers such as convolutional neural network (CNN), feed-forward neural network (FNN), support 

vector machine (SVM) and K-Nearest Neighbor (KNN) with their following accuracies respectively, 

98.33%, 95.40%, 91.40% and 93.30%. CNN provided a highest accuracy compare to other classifiers 

[5]. In this study, a multilayer perceptron by training using Levenberg-Marquardt (LM) has been 

proposed in order to classify the acute lymphoblastic leukemia either it is B or T. The motivation to do 

this classify because the hematologist face some difficulty to distinguish these cells unless do some 

specific test such as flow cytometry. The following section will be discussed about several image 

processing and how to implement this classifier effectively.  
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2.  Methodology 

The block diagram below shown the proposed classification method for acute leukemia images which 

consist of several image processing techniques such as image enhancement, color thresholding, feature 

extraction and classification. 

 

 

  

 

 

 

 

 

 

Figure 1: The proposed method for classification of acute lymphoblastic leukemia. 

2.1.   Image Acquisition 

Figure 2 (a) and (b) were some examples of the captured images of acute lymphoblastic leukemia 

for type B and T, respectively, which, were captured under 100X magnification and at a resolution of 

1280×960 pixels in Hospital Universiti Sains Malaysia (HUSM). 

   
(a) Type B                          (b) Type T 

 

Figure 2. Sample images of acute lymphoblastic leukemia (ALL). 
 

                                               
 

(a) Type B                          (b) Type T 

 

Figure 3. Segmented images of acute lymphoblastic leukemia (ALL). 

 

2.2.   Image Processing 

The effectiveness of the image enhancement process will make it easier for image segmentation, 

features extraction and classification of the blood sample slide images to identify leukemia. Thus, 

local contrast stretching has been implemented on B and T types of ALL images. By implementing 

this algorithm, each red, green and blue color space will be distributed linearly over the whole 

histogram so that the dynamic range of the histogram is fulfilled (0 – 255)[6][7]. After that, automatic 

color thresholding based on HSI (Hue, Saturation, Intensity) color space has been applied. In order to 

segment white blood cell (WBC) from the background and red blood cell (RBC), Hue component has 

been extracted from HSI color space. Based on the previous study,  Hue component can provided a 
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fully information about WBC while saturation component contains information about nucleus only 

[8]. The threshold value is set to 0.5. Any region which has greater than 0.5 will be considered as the 

WBC and the rest will be eliminated from the images as shown in Figure 3. 

               
 

(a) Type B                                                                      (b) Type T 

    

Figure 4. Zooms of  Segmented images of acute lymphoblastic leukemia (ALL). 

 

2.3.   Feature Extraction 

Figure 4 shown some individual cells from the segmented images for each category. In order to 

distinguish WBC either it is type B or type T, it must have fulfilled the characteristic as below [9]: 

- Type B has rather small, uniform blast cells with scanty cytoplasm and rounded with usually a 

single nucleolus and have a smudgy homogenous chromatin without prominent nucleoli. 

- Type T has varied lymphoblasts, including numerous larger blasts with more open chromatin, 

prominent nucleoli and abundant cytoplasm.  

After that, feature extraction is used to measure the properties of WBC. A number of approaches 

have been developed for feature extraction in acute leukemia identification system, such as the 

geometrical features [10][11], texture features [12][13], and the combination of geometrical ,texture 

and color features[14][15][16]. Before that, all of the WBC should be crop manually in order to extract 

features efficiently. There are some shape and geometrical based features that have been extracted 

such as area, perimeter, convex area, eccentricity, solidity, circularity and Affine Moment Invariant. 

For texture-based features such as contrast, correlation, energy and entropy have been extracted from 

segmented WBC images. Finally, color-based features are also extracted such as standard deviation 

and mean of RGB (Red, Green,Blue) color space. In total, there are 25 features have been extracted 

from the segmented WBC of both types of ALL which were then fed up as the neural network inputs 

for the classification. Beforehand, the features must be normalized between 0 to 1 in order to achieve 

high performance of classification. Noted that these features have been implemented on whole images 

in this study and the choice of the features has been driven by suggestions of the experts in HUSM and 

validate by them. 

 

2.4. Classification using Multilayer Perceptron 

Multilayer Perceptrons are gaining popularity in classification task due to its flexibility, robustness 

and high computational rates [17]. The classification performance of the MLP network depends on the 

structure of the network and training algorithm. The MLP network consists of an input layer that 

accepts the input data used in the classification, hidden layers and an output layer as shown in Figure 

5. In this study, the Levenberg-Marquardt (LM) was used as a training algorithm due to it has a much 

better learning rate and can keep the relative stability.Detailed about LM algorithm can be found here 

[18]. 
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Figure 5. Schematic diagram of MLP model with 1 hidden layer 

 

 

For the classification of overall WBC inside acute leukemia blood samples, there are a total of 1062 

WBCs have been segmented from B-type and T-type images. The data division is set into 70% for 

training phase while 30% for the testing phase as shown in Table 1 below. In this study, the 

comparison has been done in five states in order to obtain the optimum number of hidden nodes for 

training and testing data. For the hidden node, the numbers used during the training phase are varied 

from 1 to 30 nodes, with the interval of 1 until the best classification result is achieved.The states are 

referring to the initial value assigned to the function when a random number generator (RNG) is 

called. The structure of the MLP network is set to 25:10:1 (input node: hidden node: output node). The 

other parameters are set such as training algorithm = LM, goal = 0.001, the number of epochs is set to 

1000 and activation function is tan-sigmoid. Noted that,the evaluation is based on accuracy only due 

to the analysis is based on positive samples,which are B and T, hence, sensitivity and specificity are 

neglected in this context. 

 

Table 1. Input data division for classification method 

 

Overall Dataset Training Dataset (70%) Testing Dataset (30%) 

B = 601 

             T = 461 

B = 421 

T = 323 

B = 180 

             T = 138 

             Total = 1062 Total = 744 Total = 318 

 

 

3. Results&Discussions       

 

In this section, the classification performance based on overall features will be elaborated here. For 

this purpose, a total of 25 input features have been fed into the MLP network. There are two different 

analyses that have been conducted which are analysis of finding the best number of states and the best 

number of hidden nodes. All of this can be obtained when the MLP network achieved the highest 

testing result. The states refer to the initial values assigned to the function when a random number of 

generator is called. Different initial random values will produce different results. Hence, the testing 

has been done in five states to choose the best structure for MLP network. 

. In order to avoid the problem of over-fitting, it is necessary to determine the best number of 

hidden nodes. Table 2 and Figure 6 show the analysis of number of hidden nodes for classification 

between B and T using MLP(LM) network.Based on Table 2, the best classification performance is 

obtained at state 5 and number of hidden nodes of 4 with testing accuracy of 96.99%.The results also 

show that the testing accuracy better than 90% has been archieved for other state. 

 

 

 



International Conference on Biomedical Engineering (ICoBE)

Journal of Physics: Conference Series 1372 (2019) 012044

IOP Publishing

doi:10.1088/1742-6596/1372/1/012044

5

 

 

 

 

 

 

 

Table 2. Analysis of number of hidden node for classification between T-type and B-type WBC using 

MLP_LM network  

 

State Number of Hidden 

Node 

Training Accuracy (%) Testing Accuracy (%) 

1 29 99.61 95.32 

2 29 99.48 95.65 

3 30 99.48 95.97 

4 21 99.74 94.31 

5 4 97.51 96.99 

 

 
Figure 6. Analysis of Number of Hidden Nodes for classification between B and T using MLP(LM) 

network 

 

 

4. Conclusion 

It is shown that MLP_LM network produces the best classification performance of 96.99% at state of 

5 using 4 hidden nodes. Hence, MLP network is suitable for detection of acute leukemia cells in order 

to classify either it is B or T type of leukemia. 
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