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 Abstract- Wheelchair control using a Brain Machine Interface 
based on motor imagery requires adequate subject training. In 
this paper we propose a new algorithm for a brain machine 
interface design which is implemented in real-time wheelchair 
navigation using minimum subject training.  Classification of 
motor imagery for forward, stop, left and right hand movements 
are performed using Elman neural classifiers. Real-time 
wheelchair navigation is performed with trained and naive 
subjects to validate the proposed algorithm. 
 

I.    INTRODUCTION 
 

People with total paralysis and severe spinal cord injuries 
rely on brain machine interfaces (BMI) to control electronic 
devices. A BMI is a digital communication system, which 
connects the human brain directly to an external device 
bypassing the peripheral nervous system and muscular system.  
The ability of an individual to control his EEG through 
imaginary motor tasks enables him to control devices.  Motor 
imagery (MI) classification provides an important basis for 
designing BMI. A BMI captures and decodes the MI signals 
and transforms human thought into actions. The spatio-
temporal pattern changes in the EEG can be recognized and 
associated with subject’s actual hand movements,      imagined   
movements    or    observation    of movements. The EEG 
electrodes are mainly chosen to be placed on the scalp 
overlying the sensorimotor cortex where the recorded EEG 
signals are sensitive to the movements.  

Motor imagery can modify the neuronal activity in the 
primary sensorimotor areas in a very similar way as 
observable with real executive movements [1, 2]. MI is the 
most common methodology employed by majority BMI 
researchers for robot control [3], virtual keyboard [4] and a 
simulated wheelchair [5]. This can be attributed primarily to 
the purely cognitive nature of these methods as opposed to the 
requirement of stimulus in the P300 and evoked EEG- 
potential methods. With proper training and motivation, 
majority of the subjects can learn to control the intensities of 
specific frequency bands, which can be used as a 
communication or control signal [6].   

Motor imagery has been under study to translate the EEG 
signal into left and right movement of a computer cursor. To 
analyze the EEG signals different methods have been 
proposed in the literature [7, 8]. Our goal is to use motor 
imagery to control stop, forward, left and right movements of 

a wheelchair. 
Features are extracted from the mu and beta rhythms of the 

raw MI signals. An Elman classifier is used to identify the 
four task signals. Offline ad real-time experiments are 
conducted to validate the performance of the algorithm. 
 

II.   METHODS 

A. Synchronous Experiments 

The BMI experiments are conducted in two phases first the 
MI signals are recorded using a synchronous protocol. The 
signals are analyzed offline to determine a generalized 
classifier model. Ten healthy voluntary subjects aged between 
15 and 46, participated in the experiments. MI signals for the 
four tasks, relax, forward, left and right hand movements are 
recorded for 10 trials in a single session as per the protocol 
given in [9]  

An ADI Power Lab amplifier is used to record the  EEG  
with two gold plated cup  electrodes placed at the C3 and C4 
locations on the sensorimotor cortex area as per the 
International 10-20 Electrode Placement System [10], A 
digital band pass filter (0.5 Hz to 100 Hz) is applied to the raw 
signal. The EEG signals are amplified and sampled at 200 Hz. 
At the time of data recording the subjects are free from illness 
or medication. 40 EEG signals collected from C3 and C4 
electrodes for the four motor imagery tasks are considered for 
classification. For this experiment artifacts such as eye blinks 
were not removed. EEG is recorded for 10 seconds for each 
task per trial. 

 
B. Feature Extraction 
To extract the band power features, the raw EEG signals are 
segmented into 0.5s windows with an overlap of 0.25s. 
Segmented data are band pass filtered between 8 Hz and 30 
Hz using a Chebyshev IR filter to obtain the mu and beta 
frequencies. 195 features from five frequency components (8-
10Hz, 10-12Hz, 13-15Hz, 16-18Hz and 19-30Hz) are used as 
the input to the neural classifier. 
 
C.  Classification Procedures 
Elman recurrent neural networks (ERNN) have feedback 
connections which add the ability to also learn the temporal 
characteristics of the data set. In this study ERNN architecture 
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with three layers is used.  The ERNN makes a copy of the 
hidden layer which is referred to as the context layer. The 
purpose of the context layer is to store the pervious state of the 
hidden layer at the previous pattern presentation [11].  

The network is trained using a back propagation (BP) 
training algorithm. The BP training algorithm involves three 
stages [12] the feed forward of the input training pattern, the 
calculation and back propagation of the associated weight 
error and the weight adjustments. The Elman network is 
modeled using 195 input neurons, 9 hidden neuron and 4 
output neurons. The input data are normalized using a binary 
normalization algorithm [12]. Training is conducted until the 
average error falls below 0.001 or reaches a maximum 
iteration limit of 10000. Mean square error is used as a 
stopping criterion. 400 data samples are used in this 
experiment. Data samples are chosen randomly.  80% of the 
data samples are used to train the classifier to recognize the 
four motor tasks. The network is tested with all 100% data 
samples. The ERNN has an average classification accuracy of 
90.87% and maximum classification of 95.5%. Figure 1 shows 
the training rounds versus classification accuracy plot for the 
ERNN and Figure 2 shows the epoch versus mean square error 
plot of the ERNN. 

 

III REAL-TIME EXPERIMENTS 

 
In the second phase of the experiments the modeled 

ERNN is employed for the real–time wheelchair control. The 
output of the classifier is translated into control signals 
through a BMI interface to operate a power wheelchair. The 
BMI wheelchair is equipped with two proximity sensors to 
stop when obstacles are detected. Control is passed again to 
the subject for further navigation. MI signals are given to the 
interface every 3s by the subject. 

In the real-time experiments six (S1, S3, S5, S6, S7, S10) 
of the ten subjects participated. One naive subject (s11) who 
did not participate in any of the synchronous experiments also 
participated. Experiments are carried out in an indoor 
environment, the room dimensions are 15m by 5m. Obstacles 
on the traversable path are limited to one, with some obstacles 
along the walls [A to F].  

The subjects are requested to follow an asynchronous 
protocol; two simple navigational protocols were given to the 
subjects; in the first protocol the subjects are required to 
navigate the wheelchair from location 1 to location 4 ( 14 m) 
following a clockwise sequence (see Figure 3) and in the 
second protocol the sequence is reversed from 4 to 1 

 

 
 

Fig. 1. Training Round versus Classification Accuracy Plot for generalized 
ERNN. 

 

 
 
 

Fig. 2. Epoch versus Mean Square Error Plot of the generalized Elman 
Classifier. 

 
 
 

 
 
 
 
 
                                                         
 

 
 
 
 

 
Fig. 3. Real-time experiment protocols 

 
The task given to the subjects was to drive the BMI 

wheelchair avoiding the obstacles in an indoor environment 
showing using the two protocols. Each subject navigated the 
BMI wheelchair only once in a 30 minute session. 
From the experimental results it was observed that all the 
subjects were able to successfully navigate the wheelchair, 
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generating all the four states, stop, forward, left and right. 
Some subjects were not able to switch between states 
immediately.  Three of the subjects (S3, S4 and S11) were 
able to complete both the protocols, with an average   of 15s 
navigational time per protocol; subject S11 easily controlled 
the navigation of the BMI wheelchair, his performance was 
comparatively better than all the subjects who participated in 
the real time experiments. 

IV. CONCLUSION 

 
This paper presented an algorithm for a BMI design to 

control a power wheelchair. Synchronous and asynchronous 
experimental results are presented. Results of real-time 
navigation of the BMI wheelchair in an indoor environment 
are presented for minimal subject training and naive subjects.  
Subjects are able to control the navigation of a BMI 
Wheelchair using their motor imagery for four states for 
simple protocols. However more complex protocols require 
more subject training, moreover subjects reported fatigue after 
the 30 minute session.  

Real-time experiments validate the proposed BMI design 
for real-time navigation. Though the results for real-time 
navigation are significant, it’s also observed from the 
experimental results that some subjects require more training 
sessions to complete the given protocols. Future works will 
focus on real-time experimentations for more complex 
protocols. EEG based BMI have potential applicability beyond 
the restoration of lost movement and rehabilitation in 
paraplegics and would enable normal individuals to have 
direct brain control of external devices in their daily lives. 
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