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Abstract- The computation of a mobile robot position and 
orientation is a common task in the area of computing vision and 
image processing. For a successful application, it is important 
that the position and orientation of a mobile robot must be 
determined properly.  In this paper, a simple procedure for 
determining the orientation of the mobile robot using two 
cameras is presented. The two cameras are used to capture the 
images of a mobile robot at various orientations. Four simple 
neural network models are developed to associate the inputs and 
output (orientation). First neural network model is used to 
estimate the orientation of a mobile robot using only the features 
derived from the center camera.  The second neural network 
model is used for estimating the orientation of a mobile robot 
using features derived from both the centre and side cameras. 
The third neural network model is used to estimate the 
orientation using features derived from the composition matrix. 
The fourth neural network model is used for estimating the 
orientation using Singular Value Decomposition (SVD) 
technique. Simulation results show that the proposed algorithm 
can be used to estimate the orientation of the mobile robot 
accurately.   
 

I.    INTRODUCTION 
 

   The intelligent mobile robots are widely used in applications 
such as general indoor and outdoor operations, emergency 
rescue operations, underwater and space exploration, pipe and 
duct inspection in power plants, construction environments 
and so on [1].  Research on mobile robots has attracted much 
attention in recent years since they are increasingly used in 
wide range of applications [5-13].  
   Mobile robots have the capability to move around in their 
environment and are not fixed to one physical location. For 
this reason, accurate localization estimation is one of the main 
requirements for mobile robot navigation. Indoors and 
outdoors, mobile robots need to know their exact position and 
orientation in order to perform their tasks [2]. 
 

II.   BACKGROUND 
 

   Different techniques have been used, including several 
sensors such as sonar sensors, odometry, ultrasonic beacons to 
obtain a precise position and orientation of a mobile robot [5-
16]. Guilherme N. DeSouza et al [3] survey the developments 
of the last 20 years in the area of vision for mobile robot 

navigation. Two major components of the paper deal with 
indoor navigation and outdoor navigation. For each 
component, they have further subdivided our treatment of the 
subject on the basis of structured and unstructured 
environments. For indoor robots in structured environments, 
they have dealt separately with the cases of geometrical and 
topological models of space. For unstructured environments, 
they have discussed the cases of navigation using optical 
flows, using methods from the appearance-based paradigm, 
and by recognition of specific objects in the environment. 
Another survey on the state-of-the-art in sensors, systems, 
methods, and technologies for mobile robot’s positioning is 
presented by J. Borensteini et al [4].  
   Accurate position and orientation estimation are extremely 
important to the successful operation of most autonomous 
mobile robots. Localization is the process of finding both 
position and orientation of a vehicle. As a mobile robot moves 
through its environment, its actual position and orientation 
always differs from the position and orientation that it is 
commanded to hold. Therefore, a vision system is always 
considered as the best sensor to find the current location of the 
robot in its environment. Antonio Paulino et al [5] present an 
approach to maintain the positions and orientations of multiple 
robots using a single camera. 
   Gijeong Jang et al [6] present a novel localization paradigm 
for mobile robots based on artificial and natural landmarks. A 
model-based object recognition method detects natural 
landmarks and conducts the global and topological 
localization. In addition, a metric localization method using 
artificial landmarks is fused to complement the deficiency of 
topology map and guide to action behavior. The recognition 
algorithm uses a modified local Zernike moments and a 
probabilistic voting method for the robust detection of objects 
in cluttered indoor environments. An artificial landmark is 
designed to have a three-dimensional multi-colored structure 
and the projection distortion of the structure encodes the 
distance and viewing direction of the robot. 
   Margrit Betke et al [7] describe an efficient method for 
localizing a mobile robot in an environment with landmarks. 
They assume that the robot can identify these landmarks and 
measure robot’s bearings relative to each other. Given such 
noisy input, the algorithm estimates the robot’s position and 
orientation with respect to the map of the environment. The 
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algorithm makes efficient use of their representation of the 
landmarks by complex numbers. The algorithm runs in time 
linear in the number of landmarks. 
   James L. Crowley [8] describes a system for dynamically 
maintaining a description of the limits to free space for a 
mobile robot using a belt of ultrasonic range devices. These 
techniques are based on the principle of explicitly representing 
the uncertainty of the vehicle position as well as the 
uncertainty inherent in the sensing process. A side effect of 
matching observations to a local model is a correction to the 
estimated position of the robot at the time that the observation 
was made. A Kalman filter update equation is developed to 
permit the correspondance of a line segment to the model to 
be applied as a correction to estimated position. 
   Most of methods, normally, give an estimation of the 
position and orientation of the vehicle, but, often, they are not 
able to provide a good estimate of the uncertainty in the 
measurement. That information is useful in application where 
multisensor fusion is requested. In contrast to the traditional 
approach, visual recognition is formulated as one of matching 
appearance rather than shape. For any given robot vision task, 
all possible appearance variations define its visual workspace. 
   S. Noushath, A. Rao and G. Hemanthakumar [9] propose 
SVD based algorithms for robust face/object recognition and 
ascertained the efficacy of the SVD based algorithms for both 
face and object recognition which are useful in robot vision 
related tasks. Shree K. et al [10] propose the method where a 
set of images is obtained by coarsely sampling the workspace. 
The image set is compressed to obtain a low-dimensional 
subspace, called the eigenspace, in which the visual 
workspace is represented as a continuous appearance 
manifold. Given an unknown input image, the recognition 
system first projects the image to eigenspace. The parameters 
of the vision task are recognized based on the exact location of 
the projection on the appearance manifold. An efficient 
algorithm for finding the closest manifold point is described. 
The proposed appearance representation has several 
applications in robot vision. 
 Goal-oriented navigation of a mobile robot by landmark 
based techniques is a straightforward and suitable approach. E. 
Stella, et al [11] method permits to determine the vehicle 
location and relative uncertainty, when its orientation is 
obtained by a heading sensor, using a visual landmark based 
method. 
 
 A. L. Betker, et al [13] used a feedforward backpropagation 
neural network model to estimate the resultant center of mass 
(COM) trajectory in the sagittal plane. The authors have 
estimated the COM trajectory for a two-segment inverted 
pendulum, using clinically available information.  
   Jason A. Janet et al [14], compare two neural network-based 
approaches to global selflocalization (GSL) for autonomous 
mobile robots using a Kohonen neural network model and a 
region-feature neural network. 
 

The researchers above give us an opportunity to propose our 
approaches to create a simple feature extraction algorithm and 
neural network technique to solve the localization problem of 
mobile robot. 
 

III.   EXPERIMENTAL IMPLEMENTATION 
 

A.    Image Acquisition 
    The first camera (center camera C1) is fixed at the centre of 
the floor at the height of 2.1m above the floor area. To 
estimate the orientation of a mobile robot a simple 
experimental setup is made. The image acquisition system 
uses two webcameras. The size of the floor area covered by 
the first camera is 1.7m length and 1.3m width. The second 
camera (side camera C2) is fixed at the height of 2.3m above 
the ground level.  
   The first camera is fixed at an angle of 90° above the mobile 
robot and the second camera is fixed at an angle of Ө2° 
vertically towards its centroid for increasing field of vision 
area (Ө2=22.5°). 
    179 images of the mobile robot from each webcam at 
different position and orientation are acquired. Figure1 
illustrates the experimental setup used for capturing the 
images of mobile robot. 

 

 
 

Fig. 1. Experimental Setup 
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Fig. 2. Samples of images captured at different orientations using two 
cameras 

 
B.    Feature Extraction 
   The resolution with 640x480 pixel causes considerable delay 
in the execution of the acquisition process and longer 
processing time. As a result, all the images are resized to 
32x48 pixel before converting into gray-scale images as well 
as binary images.  
 
Feature Extraction Algorithms for Composition Matrix 

 
1) Resize the original image into 32 x 48 pixel resolution. 
2) Convert the resized image into gray-scale image. 
3) Convert the gray scale image into binary image by 

adjusting the threshold value.  
4) Representing the resized center camera C1 images as A 

and resized side camera C2 images as B, the 
composition of both images are obtained by 
multiplying the image matrix A with the transposed of 
image matrix B. Hence, the new composition matrix 
can be represented as ABT. 

5) From the composition  matrix, obtain four coordinates 
to localize the mobile robot, which is rectangular in 
shape: A= (xmin , ymin), B= (xmin , ymax),  C=(xmax , ymin), 
and   D=(xmax , ymax). 

6) Crop the image of mobile robot. 
    6)  From the global image, the global centroids (Gx,Gy),  
          area and perimeter are computed. The local         
          centroids(Lx,Ly), sum of local columns, sum of local  
          rows, moment of local columns and moment of local   
          rows are obtained from the local or cropped image.  
          These parameters are used as input features for training  
          the neural network. 

 
 
 
 

Fig. 4 shows the first three steps involved in feature 
extraction. 

 
 
Fig. 4.  (a)  Resized image from first camera with 32 x 48 pixel, (b) Edge 

image from first camera,  (c) Resized image from second camera with 48 x 32 
pixel,  (d) Edge image from second camera with transposed matrix (e) 
Composition matrix from first and second cameras with 32 x 32 pixel. 

 
For each binary image, sum of pixel value along the rows 

and the columns are all computed. From the computed pixel 
values, the local region of interest is defined. Fig. 5 shows 
how the local region of interest is defined from the original 
image. 

 
 
 
 
 
 
 
 
 
 
 
 

           Fig. 5  (a). Global image,  (b). Local or Crop image. 

   
For each mobile robot position, the angle of orientation is 

measured manually. 
 
Feature Extraction Algorithms for SVD Technique 

 
1) Resize the original image into 120 x 150 pixel 

resolution. 
2) Convert the resized image into gray-scale image 
3) Convert the gray scale image into binary image by 

adjusting the threshold value. 
4) Representing the resized center camera C1 images 

as A and resized side camera C2 images as B, the 
composition of both images are obtained by 
multiplying the image matrix A with the 
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transposed of image matrix B. Hence, the new 
composition matrix can be represented as ABT. 

5) Find SVD value of the composition matrx and 
choose only 14 columns of the singular values. 
These parameters are used as input features for 
training the neural network. 

 
IV.   NEURAL NETWORK ARCHITECTURE 

 

   Artificial Neural Network (ANN) provides alternative form 
of computing that attempts to mimic the functionality of the 
brain [20]. In developing the first neural network model, the 
11 features obtained from the images of the center camera are 
taken as the input pattern. The first network model has 11 
input neurons, 21 hidden neurons and one output neurons. The 
22 features derived from the both camera images are 
considered as the input features for the second neural network 
model. The second neural network model is designed for 
estimating the orientation and it has 22 input neurons, 21 
hidden neurons and one output neuron. The third neural 
network model is designed for estimating the orientation using 
two cameras and composition matrix data features and it has 
32 input neurons, 21 hidden neurons and one output neuron. 
The fouth neural network model is designed for estimating the 
orientation for SVD technique and it has 14 input neurons, 21 
hidden neurons and one output neuron.  All hidden neurons 
have a bias value of 1.0 and the input and hidden neurons are 
activated by binary sigmoidal activation function of the form 
 

)1(

1
)(

xe
xf


          (1) 

 
   Every the neural network models is trained with 130 
samples and tested with 179 samples. The initial weights for 
the above network are randomized between -0.5 and 0.5. A 
trial weight set consist of 60 sets of randomized weight 
samples are considered. While training the network models, 
the performance goal is fixed as 0.001and testing tolerance is 
fixed as 0.1. Also, while training the network models, the 
learning rate and momentum factor are chosen as 0.15 and 
0.95 respectively.  
 

IV.   RESULTS AND DISCUSSIONS 
 

  The four neural network models are trained by back 
propagation procedure with momentum and adaptive learning 
rate. The training results for the four neural networks are 
tabulated in Table 1, 2, 3 and 4 respectively.  

TABLE I 
NEURAL NETWORK  TRAINING RESULTS USING  CENTER CAMERA 

Number of input neurons: 11 
Number of Hidden Neurons: 21 
Number of output neuron: 1 
Activation Function:  Binary sigmoidal activation function 
Learning Rate: 0.15             Momentum Factor:0.95 
Performance Goal: 0.001       qh=1.0       qo=1.0 
Testing Tolerance: 0.1 
Number of samples used for training: 130 
Number of samples used for testing: 179 
 
Trial 
No. 

Mean Classification 
Rate(%) 

 Mean Epoch for  
Training 

1 82.26 162235 
2 82.26 162235 
3 82.26 162235 
4 82.26 162235 
5 82.66 155837 

 

TABLE II 
NEURAL NETWORK  TRAINING RESULTS USING TWO CAMERAS 

Number of input neurons: 22 
Number of Hidden Neurons: 21 
Number of output neuron: 1 
Activation Function:  Binary sigmoidal activation function 
Learning Rate: 0.15             Momentum Factor:0.95 
Performance Goal: 0.001      qh=1.0       qo=1.0 
Testing Tolerance: 0.1 
Number of samples used for training: 130 
Number of samples used for testing: 179 
 
Trial 
No. 

Mean Classification 
Rate(%) 

 Mean Epoch for  
Training 

1 94.02 17308 
2 94.11 18252 
3 94.28 17340 
4 94.18 17514 
5 94.37 17440 

 

TABLE III 
NEURAL NETWORK  TRAINING RESULTS USING  TWO 

 CAMERAS AND COMPOSITION MATRIX  

Number of input neurons: 32 
Number of Hidden Neurons: 21 
Number of output neuron: 1 
Activation Function:  Binary sigmoidal activation function 
Learning Rate: 0.15             Momentum Factor:0.95 
Performance Goal: 0.001      qh=1.0       qo=1.0 
Testing Tolerance: 0.1 
Number of samples used for training: 130 
Number of samples used for testing: 179 
 
Trial 
No. 

Mean Classification 
Rate(%) 

 Mean Epoch for  
Training 

1 93.24 10637 
2 92.95 10042 
3 93.07 11292 
4 93.29 10467 
5 93.58 10535 

From Table I, it can be observed that the highest mean 
classification rate is 82.66% and lowest mean epoch is 
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155837. Next, from Table II and III, it can be observed that 
the highest mean classification rates are 94.37% and 93.58% 
respectively. Similarly, it can be observed that the lowest 
epoch for the second and third neural networks are 17308 and 
10042 respectively. 
 

TABLE IV 
NEURAL NETWORK  TRAINING RESULTS USING  COMPOSITION  MATRIX WITH SVD TECHNIQUE 

Number of input neurons: 11 
Number of Hidden Neurons: 21 
Number of output neuron: 1 
Activation Function:  Binary sigmoidal activation function 
Learning Rate: 0.15             Momentum Factor:0.95 
Performance Goal: 0.001       qh=1.0       qo=1.0 
Testing Tolerance: 0.1 
Number of samples used for training: 130 
Number of samples used for testing: 179 
 
Trial 
No. 

Mean Classification 
Rate(%) 

 Mean Epoch for  
Training 

1 77.92 236859 
2 78.72 223126 
3 78.19 220763 
4 78.82 202207 
5 78.82 204588 

  
From Table IV, it can be observed that the highest mean 
classification rate is 78.82% and lowest mean epoch for 
training the fourth network model is 202207. 
 
Fig. 6 shows the actual values and predicted values of 
orientations of mobile robot when using center camera.  
 
 

             
 

Fig. 6 Actual Vs Predicted Values Using Center Camera 
 
Next, Fig. 7 shows the actual values and predicted values of 
orientations of mobile robot when using two cameras.  
 
 

         
 

Fig. 7   Actual Vs Predicted Values Using Two Cameras 
 

Fig. 8 shows the actual values and predicted values of 
orientations of mobile robot when using two cameras and 
composition matrix.  

 

          
 

Fig. 8 Actual Vs Predicted Values Using Two Cameras and Composition 
Matrix 

 
Fig. 9 shows the actual values and predicted values of 

orientations of mobile robot when using SVD technique.  
 
 

            
 

Fig. 9 Actual Vs Predicted Values Using SVD Technique 
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   TABLE V 

COMPARISON  OF  AVERAGE  MEAN  CLASSIFICATION RATE 
Neural Network Model Average Mean 

Classification 
Rate(%) 

 Average Mean Epoch 
for  Training 

Center Camera 82.66 155837 
Two Cameras 94.37 17308 

Two Cameras and 
Composition Matrix 

93.58 10042 

Singular Value 
Decomposition (SVD) 

78.28 202207 

 
   From the above results, it is observed that the orientation 
estimated using the two cameras features provide better results 
when compared with the single camera results. Even though 
that the third neural network model (Two Cameras and 
Composition Matrix) has the lower classification accuracy 
compared to the two cameras features, but mean epoch for 
training is the lowest when compared with all the three 
methods.  It is also observed that the orientation estimated 
using the Singular Value Decomposition (SVD) features 
provide the results with only 78.82% compared with 
transposed images, the orientation estimated provide the 
highest results. 
 

V.   CONCLUSION AND FUTURE WORK  

 
A new feature extraction algorithm has been implemented 

for extracting features from images taken at different 
orientations. In order to test the proposed features, four simple 
neural network models are developed for estimating the 
orientations of a mobile robot. In this paper, two cameras are 
used to capture images of mobile robot at various orientations 
between 0° and 90°. In future, it is proposed to include 360o 
orientations and to apply the proposed method. Further, it is 
also proposed to improve the performance of the neural 
network for the accurate estimation of orientation of a mobile 
robot by increasing the size of the pixel. 
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