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Abstract- In this paper, a simple method for crack identification 
in steel plates based on the Frame Energy based Discrete Cosine 
Transformation [DCT] moments is presented. A simple 
experimental procedure is also proposed to measure the vibration 
at different positions of the steel plate. The plate is excited by an 
impulse signal and made to vibrate. Frame Energy based DCT 
moment features are then extracted from the vibration signals 
which are measured at different locations. A simple neural 
network model is developed, trained by Back Propagation (BP), 
to associate the frame energy based DCT moment features with 
the damage or undamaged locations of the steel plate. The 
effectiveness of the system is validated through simulation. 
 

I.    INTRODUCTION 
 

   Health monitoring of vibrating structure in machines is a 
important task in industries. Damages can put human safety at 
risk, cause long term machine downtimes, interruption in the 
production and subsequently increase the production cost. 
Early damage detection and possible location of the faults 
from the vibration measurements is one of the primary task of 
condition monitoring. Condition monitoring enables early 
detection of faults. In recent years there has been an increasing 
interest in the development of online condition monitoring 
systems due to the success in several applications. 
   A damage condition of a steel plate can be detected by the 
vibration signal propagating through it, when it is subjected to 
an impulse force. There are many technologies that have been 
developed to detect the faults in a gear box, bridge structures 
and bearings. 
   The existence of a crack in a steel plate reduces the stiffness 
of the plate and this reduction in stiffness ultimately reduces 
the natural frequencies. Further, this also changes the mode 
shape of vibration. An analysis of the propagation of the 
vibration signal makes it possible to detect the fault. 
An extensive literature review of the state of art of vibration 
analysis and damage detection has been published by S.W. 
Doebling [1]. A detailed survey of the state of art in the 
damage detection field using modal analysis has been 
presented by Richardson [2]. A detailed review of the different 
vibration and acoustic methods such as the time and frequency 
domains, acoustic emission techniques are presented by 
Tandon and Nakra [3]. Using fracture mechanics method, 
Dimarogonas [4] and Anifactis [5] computed the equivalent 

stiffness and developed a model for crack detection in beams. 
An experimental technique to estimate the location and depth 
of a crack in a beam has been developed by Adams and 
Cawley [6]. The methodology of crack detection based on 
natural frequency changes has been closely studied by Shen 
and Pierre [7]. In this paper, it is proposed to detect the faulty 
location in a steel plate based on the energy based discrete 
cosine transformation features extracted from the vibration 
signal. 

 
II.   EXPERIMENTAL DESIGN AND DATA ACQUSITION 

 

A. Data Acquisition System (DAQ) 
   Measurements of the vibration signals are acquired using a 
LMS SCADAS Mobile SCM01 Data Acquisition System. 
This system has 4 input channels and Ethernet connectivity. 
The features supported are : a maximum sampling frequency 
range of up to 102.4 kHz per channel, 105 dB signal to noise 
ratio and a high speed Ethernet connection. The DAQ system 
is monitored through the LMS Test Lab software which 
supports a wide range of applications. 
 
B. Vibration and Pressure Transducers 
   Accelerometers are Vibration transducers which possess 
high natural frequencies compared to the vibration to be 
measured and indicate acceleration [8]. The piezoelectric 
accelerometers are widely preferred over the digital 
accelerometers in many applications due to its high accuracy 
and sensitivity. The general purpose Piezoelectric 
accelerometer with an input sensitivity of 10 / 31.6 / 100mV/g 
(g = 9.82 m/s2) and a resonant frequency of 28 kHz is used in 
this experimental work. Force transducers are used to produce 
impulse forces and commonly used for impact tests. The 
general purpose force transducers or so called impact hammer  
(Dytran 5800B2 -50LbF range, 100 mV/LbF) is used in this 
research work. 
 
C. Experimental Setup 
   A simple experimental design to test the structure in a 
simply supported condition is proposed in this paper. An 
aluminum test rig of dimensions (90x60x3) cm is fabricated 
and used as a test bed. Two thin threads are tied across the test 
bench to hold the steel plate in a simply supported manner. 
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The distance between the two threads is 40 cm. An 
undamaged steel plate divided into 5 rows, 16 columns is 
considered for the experimental setup of dimensions 
(60x24x1) cm. The Steel plate is then mounted on the test rig 
as shown in Figure 1 

 

 
 

Fig. 1. Experimental Setup of Simply Supported Steel Plate 

 
D. Estimation of Natural Frequency of Steel Plates 
   The natural frequency or eigen frequency of a system is the 
frequency at which the system oscillates. Any material 
possesses its own natural frequency. The natural frequency is 
a physical property which subsequently gets affected when 
there is a damage caused to the system. The sample steel plate 
has the following values: Poisson ratio (µ) = 0.3,           
Young’s modulus (E) = 210N/mm2, Length (l) = 60x10-1m 
and Thickness (h) = 1x10-2m. The calculation for the natural 
frequency of the steel plate structure can be computed [9] 
using equation (2)  
 

)1(12
22  EhD Nm  (1) 

 

hDafn )21(  Hz  (2) 

 
where D is the stiffness of the plate, (D = 1750Nm) and  fn is 
the calculated natural frequency of the plate, (fn = 41.316 Hz) 
 
E. Data Capturing Procedure 
   The plate is divided equally into 5 rows and 16 columns thus 
forming cells of size (4x4) cm2. The cell contact points 
(nodes) are numbered continuously. Based on the physical 
properties of the steel plate such as natural frequency ( fn ) 
and mode shape, the sampling frequency ( fs ) is set to 2048 
Hz. The impact hammer is connected to the first ICP channel 
of the DAQ system. Three accelerometers are connected to the 
second, third and fourth ICP channels respectively. An 
impulse force is generated by hitting the impact hammer on a 
nodal point on the steel plate. The force of impact hammer hit 
is measured and recorded. The vibration propagated to the 
nearest three node points are measured using accelerometers. 
The placement of the accelerometers and the location of hit 
are shown in the Figure 2. The vibration signal is recorded for 
15 seconds and the experiment is repeated for a minimum of 5 

times. The above measurements are carried out in the steel 
plate without any damage. Damages of micro cracks are made 
externally through sharp nails inside the cells. The damages 
are made in 16 cells and the above experiment is repeated. 
Similarly the same procedure is repeated at all the nodal points 
and the vibration signals obtained at these nodal points are 
recorded. The signals captured are in the ‘.xdf’ format, which. 

 

 
Fig. 2. Placement of Accelerometer and the Point of Hit 

 
are then exported to ‘.wav’ format using the LMS Text Lab 
software for analysis 
 

III.   FEATURE EXTRACTION 
 

A.    Signal Conditioning 
   The vibration signals at various locations are recorded at a 
sampling frequency of 2048 Hz. These signals are then 
segmented into windows such that each window frame has 
256 samples. The discrete time domain representation of the 
vibration signal is written as. 

 
 ni xxxxx ...,, 21    (3) 

 

where i = 1,2,3,…N  and ni xxxx ...,, 21 are the window 

frames each having 256 samples. The high frequency 
components are removed using a hamming window w(n) 
where 

 
 12cos)1()(  NNnw   (4) 
 

where 54.0  
 
B.   Frame Energy 
    For each frame the total signal energy is computed and the 
variation in frame energy of a typical frame is shown in the 
Figure.3 

 
C.   Discrete Cosine Transformation Coefficients 

The Discrete cosine transformation represents the signal as 
a sum of sinusoids of varying magnitudes and frequencies. 

 
   




N

n
Nknnxkwky

1
2)1)(12(cos)()(   (5) 

 
where Nk ,...3,2,1  
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

 NNkw 21)(     (6) 

 
where Nk 2  and 1k  
 
Using equation (5) and (6) the DCT is applied to the 
discrete frame energies. Only the absolute DCT coefficients   

 
Fig. 3. Discrete Frame Energy per each 

fra

me. 

whose absolute coefficient values greater than half the 
absolute maximum DCT coefficient value are considered for 
further analysis. It is observed that the first 64 DCT 
coefficients have their values greater than half the maximum 
absolute DCT coefficient value 
 
D.   Discrete Cosine Transformation Coefficients Moments 
   The Maximum amplitude values and their corresponding 
index values are calculated from the DCT Coefficients. The 
Moments for the first 10 DCT Coefficients are considered and 
shown in the figure 4 
 

 ni aaaaA ,...,,, 21      (7) 
 

where A is the maximum amplitude of the absolute Discrete 
Cosine Transformation Coefficient Moments. 

 
 ni bbbbB ,...,,, 21      (8) 

 
where B is the corresponding index values for the maximum 
DCT coefficients. 

 
E.   Rate of Change of the DCT Moments 
   The Rate of Change of the absolute Discrete Transform 
Coefficient Moments are calculated using the following 
equation 
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F.   Sum of Squares of the DCT Coefficients Moments 
   The difference between the product of the Discrete Cosine 
Transformation coefficient moments are calculated using the 
following equation 
 

      1122331122 ,...,,  nnnn babababababaD   (10) 

 
G.   Product of the DCT Coefficients Moments Index and the 
Values 
   The absolute Discrete Cosine Transformation Moments 
values and the corresponding index are multiplied to form the 
following equation 

 
Fig. 4. Discrete Cosine Transform Coefficient Moments. 
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H.   Area of the DCT Coefficients Moments 
   The Area of the absolute DCT Coefficient Moments are 
calculated using the following equation 
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I.   Exponential Curve Fit for the DCT Coefficients Moments 
   The absolute DCT Coefficient Moments are fitted to an 
exponential curve using the following equation  
 

 dxbx eceaF   ..      (12) 
 
The feature vectors derived from the above features for the 
feature matrix of which are then associated with the fault and 
normal conditions. The features derived from the frame energy 
based DCT moments are selected to form the feature set 
corresponding to an accelerometer signal. As the vibration is 
measured at three different locations simultaneously we have 
52 frame energy based DCT moments and are associated to 
the condition of the steel plate 

 
IV.   CLASSIFICATION USING NEURAL NETWORK 

 

A.    Artificial Neural Network 

   An artificial neural network is an information processing 
system that has been developed as a generalization of the 
mathematical model for human cognition. [8] 
   Artificial Neural Networks (ANN) provides alternative form 
of computing that attempts to mimic the functionality of the 
brain. One of the most used learning methods in ANN is back 
propagation. The back propagation method (BP) is a learning 
procedure for multilayered feed forward neural networks. 
   BP is being used in a wide variety of application such as 
information processing, pattern recognition etc., BP procedure 
can be considered as a non linear regression technique which 
trains a neural network to acquire an input output association 
using limited number of samples chosen for a population of 



Proceedings of the International Conference on Man-Machine Systems (ICoMMS) 
11 – 13 October 2009, Batu Ferringhi, Penang, MALAYSIA 

 

5B6-4 

input output pattern. BP is most widely used learning 
algorithm since it is very simple to implement. 
 

B.     Neural Network Architecture 

   The neural network architecture consists of 4 layers, the first 
layer is the input layer, the second and the third layers are the 
hidden layers and the fourth layer is the output layer. 
   For training the neural network, 52 input neurons are used. 
The hidden layer has 7 neurons and the output layer has only 
one neuron. The output neuron is used to classify whether 
there is a fault present in the cell or not. Among the recorded 
522 samples, 60 percent (313), 65 percent (339) and 70 
percent (365) data samples are used for training and all the 
522 data samples are used for testing the network model. 
 
C.     Neural Network Training and Results 

   A 3 layer neural network with 52 input neurons, 7 hidden 
neurons and 1 output neuron is considered. Each trial consists 
of 100 sets of randomized weight samples. The sum squared 
tolerance is fixed as 0.001. The input and hidden neurons are 
activated by the sigmoidal activation function. The network is 
trained by Levenberg Marquardt back propagation procedure. 
The trained neural network is tested with the test data 
containing 522 samples with a testing tolerance of 0.01. The 
convergence of the mean squared error is shown in Fig 5. The 
results for training the network is tabulated in Table 1 which 
shows the mean epoch and the mean classification rate. 

 
TABLE I 

NEURAL NETWORK TRAINING RESULTS 

Input Neurons     : 52 

Output Neurons  : 1 

Hidden Layers     : 1 

Hidden Neurons  : 7 

Maximum Epoch : 100 

Training Tolerance   : 0.001 

Testing Tolerance   : 0.01 

Testing Samples   : 522 

Activation Function  : Sigmoidal 

Training Samples 

  
60 %  = 313  

samples 

65 %  = 339 

samples 

70 %  = 365 

samples 

No  Epochs  CR (%)  Epochs  CR (%)  Epochs  CR (%) 

1  45  84.29  100  85.82  56  88.31 

2  27  83.9  54  85.82  87  88.14 

3  58  81.6  22  85.44  100  88.12 

4  100  81.41  93  84.09  25  87.86 

5  69  81.22  100  83.52  76  86.78 

  59.5  82.48  73.8  84.93  68.8  87.84 

 
V.   CONCLUSION AND FUTURE WORK 

 

   This paper presents a simple testing method for the vibration 
based damage detection. Discrete cosine transformation is 
used in analyzing the vibration signals. A simple neural 
network is modeled and the faults are identified based on the 
discrete cosine transformation of frame energy features 
extracted from the captured vibration signal. The network 

model has a maximum and minimum classification accuracy 
of 88.14 and 86.78 respectively. 
 

 
 

 
Fig 5. Convergence of the Mean Squared Error 
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