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Abstract. The paper presents the results of investigations of the structure and magnetic 
properties of massive rapid cooled Fe50-xCo20+xB20Cu1Nb9 alloys (where x = 0, 5). Massive 
alloys were made using the method of injecting a liquid alloy into a copper mold. Samples 
were obtained in the form of 0.5 mm thick plates. The structure of the obtained samples was 
examined using an X-ray diffractometer equipped with a CuKα lamp. The phase composition 
of the alloys formed was determined using the Match program. By using Sherrer's dependence 
the grain sizes of the identified crystalline phases were estimated. Using the Faraday magnetic 
balance, the magnetization of samples as a function of temperature in the range from room 
temperature to 850K was measured. Magnetization of saturation and value of the coercive field 
for the prepared alloys were determined on the basis of magnetic hysteresis loop measurement 
using the LakeShore vibration magnetometer.  

1. Introduction 
Amorphous materials are a relatively new group of functional materials, known for over 60 years. 
Originally, materials with amorphous structure were produced in the form of thin strips and layers [1]. 
Quick cooling of the liquid alloy allowed to block the crystallization process. In this way, it is possible 
to maintain a chaotic arrangement of atoms in the volume of material. This configuration of atoms is 
suitable for liquids. Amorphous materials combine the properties of solids and liquid phases, which 
implies their extraordinary properties. Taking the form of a solid with a liquid structure, amorphous 
alloys show better properties compared to their crystalline counterparts [2-6].  

However, amorphous alloys produced in the form of thin strips have considerably limited 
applicability. Few µm for many years was the maximum thickness of this type of materials. Thickness 
of amorphous strips reaching several dozen µm. Numerous studies of scientists from around the world 
and, above all, the works of A. Inoue have contributed to the emergence of a new group of materials, 
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massive amorphous materials. Three empirical principles formulated by a Japanese scientist are some 
kind of guidelines for the production of amorphous materials [7, 8]. The multi-componentity of the 
alloy, the negative heat of mixing of the components and the correspondingly large differences in the 
length; of the atomic diameters of the main components allow the inhibition of the crystallization 
process during the cooling of the liquid alloy. Atoms of individual components can be treated as 
spheres with different atomic radii. Appropriate differences in their radii cause their mutual blocking 
during diffusion processes occurring during solidification of the liquid melt. The negative heat of 
mixing< influences the increase in the viscosity of the alloy, which additionally hinders the migration 
of atoms. Preventing the movement of atoms significantly slows down the crystallization process. 
Cooling of the alloy at a suitable rate allows solidification of the alloy in the configuration of atoms 
suitable for liquids. Obtaining volumetric amorphous alloys is possible during cooling at a speed of 
100 - 103 K / s. Well-known methods for producing massive amorphous materials are suction and 
injection methods. Using these methods, one can create a rapid-cooled alloy in the form of cores, rods 
or plates. 

Amorphous alloys are often heat treated to obtain a nanocrystalline structure. Materials of this type 
are often characterized by better properties than their amorphous precursor. Depending on the 
chemical composition used, it is possible to manufacture partially crystallized alloys in a one-stage 
process as soon as it solidifies [9, 10]. The selection of the appropriate chemical composition and 
cooling rate allows to slow the crystallization process in a way that allows only a certain amount of 
crystal phase grains to be distributed in the amorphous matrix. 

Amorphous and nanocrystalline materials are particularly interesting group of materials due to their 
good magnetic properties. Alloys with high content of iron and cobalt are characterized by the so-
called magnetically soft properties, characterized by among others: high saturation magnetization and 
low coercive field [11-18]. In addition, alloys with a high cobalt content of ten have a high Curie 
temperature.  

The purpose of the work was to produce volumetric two-phase rapid cooled alloys with chemical 
composition Fe50-xCo20+xB20Cu1Nb9 (gdzie x = 0, 5) and to study their structure and magnetic 
properties. 

 
2. Methods and material 
The base alloy with the chemical composition Fe50-xCo20+xB20Cu1Nb9 (where x = 0, 5) was made using 
a plasma furnace. For this purpose, the alloy components were measured to within 0.001 grams. Five 
gram weight was allocated to the polycrystalline ingot. Chemical elements with high purity, over 
99.99%, were used. The ingot was made in an arc furnace under a protective atmosphere of argon. The 
temperature of the plasma arc was regulated by the intensity of the current flowing through the 
electrode. Before the actual melting of the batch, pure titanium was melted which has a significant 
impact on the purity of the atmosphere in the working chamber. The batch was melted several times, 
each time turning the ingot over to the other side using a manipulator, which ensures better mixing of 
the alloy components. Purified from external contamination of ingots, crushed into smaller pieces. 
The ingot served as a batch material to produce a rapid cooled alloy by the method of injecting a liquid 
alloy into a copper mold. The alloys were produced in the form of 5mm x 5mm x 0.5mm tiles. Pieces 
of a polycrystalline ingot were placed in a quartz capillary. The batch was inductively melted at a 
constant current. The liquid alloy was forced into the copper mold through a hole in a 1mm diameter 
quartz capillary. During the process, constant argon pressure was maintained. The entire casting 
process of the high-temperature melt was carried out under a protective gas (argon) after reaching a 
vacuum in the working chamber (10-5 mbar.) To obtain a clean atmosphere, the working chamber and 
the injection system were subjected to additional argon washing. The liquid melt was then injected 
into copper water cooled molds with a hollow core in the shape of a cylinder The scheme for the 
production of rapid cooled alloys is shown in Figure 1. 
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Figure 1. Scheme of the system for the production of rapid cooled 
alloys by the injection method. 

 
The presented method of producing quick-cooled alloys allows the production of bar materials. The 

structure of the produced Fe50-xCo20+xB20Cu1Nb9 alloy samples (where x = 0.5) was investigated using 
X-ray diffraction (Brucker apparatus, Cu-Kα lamp). Advance 8 model. The thermomagnetic properties 
of the produced samples were examined by Faraday's magnetic weight. The size of crystallites formed 
during the alloying process was estimated using the Sherrer formula (1):  

 
D=(λ*K)/2β0cosΘ (1) 

 
K –Scherrer shape coefficient (K  = 0,91), 
λ – characteristic radiation wavelength, 
B0 – half-width intensity (background was included In analysis), 
Θ –  Bragg angle. 

3. Results 
Figure 2 shows diffraction patterns for Fe50-xCo20+xB20Cu1Nb9 in as cast state.  

The investigations were carried out in the 2 theta angle range from 30° to 100°. On recorded 
diffractograms, narrow peaks of considerable intensity can be distinguished from crystalline phases: 
Fe2B, BCo and αFe. In the samples, there is one more crystalline phase that could not be identified. In 
addition, the wide maximum in the angle of 2 theta from 40° to 50° is visible on the diffractograms. 
The maximum called the amorphous halo is derived from X-rays scattered on chaotically distributed 
atoms in the volume of the alloy samples. 
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Figure 2. X-ray diffraction patterns for the alloy after 
solidification in powder form: (a) Fe50Co20B20Cu1Nb9, 
(b) Fe45Co25B20Cu1Nb9. 

 
The diffractograms are typical for two-phase alloys consisting of an amorphous matrix and crystal 

grains distributed in its volume. Crystalline phases were identified using the Match program. Based on 
the diffractograms using the Sherrer formula, the average sizes of the resulting crystallites for 
particular phases were determined (Table 1). 

 
Table 1. Estimated average crystallite sizes produced during rapid cooling of the liquid alloy Fe50- 

xCo20+xB20Cu1Nb9. 

                        Crystalline phase 
Alloy 

Fe2B [nm] BCo [nm] αFe [nm] 

Fe50Co20B20Cu1Nb9 30,2 23,2 15,6 
Fe45Co25B20Cu1Nb9 29,1 30,6 16,1 

 
In the volume of the alloys, the share of the crystalline phases was identified, and the estimated 

average grain sizes for the individual phases are similar. It can be stated that the dynamics of the 
crystallization process in this case nucleation of crystal grains is similar for both alloys. This means 
that the process energy for the transformation of the second type is similar. Estimated mean grain sizes 
for all identified crystalline phases do not exceed the 100nm dimension, which allows to qualify the 
obtained samples as a nanocrystalline material [19]. During the solidification process, crystalline 
phases rich in iron, cobalt and boron were formed. As it is known, the presence of copper and niobium 
atoms in appropriate proportions affects the formation of fine-grained structure, which in turn has a 
significant impact on improving the magnetic properties of the material produced [20-23]. A small 
addition of copper made it possible to create a material with a nanocrystalline structure. Most likely 
the copper or niobium placed on the grain boundaries were small enough that their identification with 
XRD was impossible. 
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Samples of Fe50-xCo20+xB20Cu1Nb9 in the form of powders were measured using  magnetic weight 
In the fucntion of temperature  using Faraday balance. 

 

  
Figure 3. Magnetic polarization curves of saturation as a function of temperature: (a) 
Fe50xCo20B20Cu1Nb9, (b) Fe45Co25B20Cu1Nb9. 

 
Figure 3 shows reduced magnetic saturation polarization curves. The measurement was carried out 

in the range from room temperature to 850K. In the examined range, one of the inflections from the 
transition of the amorphous phase from the ferro to the paramagnetic state is observed for the 
magnetization curves. As the temperature increases, the magnetization of the test sample decreases but 
does not drop to 0, which may be a confirmation of the presence of other magnetic phases occurring in 
the volume of the alloy (αFe, BCo, Fe2B). The Curie temperature of these phases is outside the 
measurement range. The measured magnetic saturation polarization curves were subjected to 
numerical analysis. To determine the Curie temperature of the amorphous phase, a critical coefficient 
of 0.36 was used for ferromagnetics that met the Heisenberg assumptions. Curie temperature curves 
are shown in Figure 4. 

 

  
Figure 4. Dependence µ0M)1/β(T) for alloys: a) Fe50Co20B20Cu1Nb9, b) Fe45Co25B20Cu1Nb9. 

 
The Curie temperature for the Fe50Co20B20Cu1Nb9 alloy is 540K while the Fe45Co25B20Cu1Nb9 alloy 

is 557K. These results are in line with expectations, it is known that increasing the cobalt content in 
the alloy increases the Curie temperature value. However, the Curie temperature increase is small 
compared to increasing the cobalt content of the alloy at the expense of iron. In work [24], a 2% 
change in the cobalt content at the expense of iron raises the Curie temperature by 20K. Smaller than 
expected, the increase may be related to the larger average grain size of the cobalt rich phase (BCo) 
for the Fe45Co25B20Cu1Nb9 alloy. It is possible to absorb more cobalt to the crystalline phase BCo in 
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the case of Fe45Co25B20Cu1Nb9 alloy, which may be a reason for reducing the content of these 
elements in the amorphous matrix. Therefore, a slight increase in Curie temperature may be observed 
depending on the cobalt content in the alloy. It should be remembered that for amorphous materials, 
the Curie temperature is not a discrete value but rather a temperature range in which the amorphous 
matrix passes from the ferro-to-paramagnetic phase. This fact is closely related to the structure of the 
amorphous structure. The volume of amorphous material contains areas of similar chemical 
composition, which is not the case with the crystalline state. These small differences affect local 
differences in the Curie temperature value, therefore the value determined is not a discrete value. 

Figure 5 contains static magnetic hysteresis loops. The measurement was made with the LakeShore 
vibration magnetometer in the magnetic field up to 2T.  

 

  
Figure 5. Static hysteresis loops with zoom in the center of M-H for: (a) and c) Fe50Co20B20Cu1Nb9, 
(b) and d) Fe45Co25B20Cu1Nb9. 

 
The shape of static magnetic hysteresis loops indicates the magnetically soft properties. The shape 

of the wasp-like is not observed in the recorded loops, which excludes the presence of magnetic hard 
and semi-hard phases in the samples. The saturation magnetitization for the Fe50Co20B20Cu1Nb9 alloy 
is 0.92T, while the value of the coercive field read from the enlarged coordinate system is 98A/m. For 
Fe45Co25B20Cu1Nb9 alloy saturation magnetization equal to 0.95T and coercive field value 418A/m 
were measured. The measured saturation magnetization values can be considered relatively high. The 
coercive field values hold the created alloys in the group of so-called soft magnetic materials, 
assuming that these materials have a coercive field value below 1000A / m [25-26]. 

4. Conclusions  
The purpose of the work was to create a material with soft magnetic properties by the method of rapid 
cooling of a liquid alloy. A volumetric rapid-cooled alloy was produced. The pressing method was 
used for this. The studies carried out allow to draw the following conclusions: 

It is possible to produce a nanocrystalline material in a one-step manufacturing process, i.e. without 
heat treatment of the material. The impact on the formation of grains of crystalline phases not 
exceeding the size of 100nm is possible by introducing appropriate proportions of elements forming 
nucleation centers and inhibiting the crystallization process, copper and niobium. 

The cooling rate of 102 K / s is sufficient to produce a nanocrystalline structure in the volume of the 
alloy with the chemical composition Fe50-xCo20+xB20Cu1Nb9 (where x = 0, 5). FeCoB based rapid 
cooled alloys are characterized by a relatively high Curie temperature value, and the effect of cobalt 
content on the increase in Curie temperature is confirmed. 

The increase in the cobalt content at the expense of iron in the tested alloy affects a slight decrease 
in the saturation magnetization value with a significant decrease in the coercive field value. 
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