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xxi 

 

𝜂𝑟 Radiation Efficiency 

Prad Radiated Power 

Lmet Metal Loss 

S11 the absolute value of return loss 

𝛤 Return Loss 

VSWR Voltage Standing Wave Ratio 

Qc conduction (ohmic) losses quality factor 

Qd dielectric losses quality factor 

Qrad radiation (space wave) losses quality factor 

Qsw surface waves loss quality factor 

Qt Total quality factor 

ρ Resistivity  

δ The substrate material loss tangent 

𝜎 Conductivity 

𝜎s Surface Conductivity 

Zs Surface Impedance 

𝜇c Chemical Potential  

qe Electron charge 

𝜏 Relaxation Time 

𝛿s skin depth 

T Temperature 

j Imaginary Unit   

KB Boltzman’s Constant 

ℏ Reduce Blanck Constant 
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Pemodelan dan Pencirian Graphene untuk Antena Gelombang Milimeter dan 

TeraHertz Berkecekapan Tinggi  

 

ABSTRAK 

Pembangunan teknologi gelombang millimeter (MMW) dan Terahertz (THz) 

untuk sistem penderiaan tanpa wayar dan aplikasi komunikasi telah berlaku dengan pesat 

disebabkan ciri-ciri unik gelombang dalam jalur-jalur ini. Antena merupakan salah satu 

elemen teras dalam aplikasi komunikasi, manakala pembangunan antena berkecekapan 

tinggi dalam jalur-jalur gelombang ini memerlukan penggunaan bahan nanokarbon 

seperti graphene. Ini adalah disebabkan oleh kemerosotan konduktivi logam 

konvensional dengan peningkatan frekuensi. Penyelidikan ini berfokus untuk 

menambahbaik prestasi antena dalam jalur MMW dan THz dengan menggunakan 

graphene. Penggunaan graphene memerlukan pemodelan matematik dan pencirian sifat 

permukaannya yang berubah mengikut frekuensi. Perubahan beza upaya kimia (𝜇c) 

(menerusi pendopan) menunjukkan kesan yang lebih ketara berbanding parameter yang 

lain. Perubahan ini adalah bergantung kepada pincangan elektrik, pincangan magnetik 

atau pendopan kimia. Nilai 𝜇c = 0eV digunakan dalam model graphene yang tidak terdop 

(ND-G), manakala nilai-nilai 𝜇c = 0.25eV and 𝜇c = 0.5eV diguna dalam model graphene 

yang didop (D-G). D-G didapati menunjukkan nilai konduktiviti permukaan yang lebih 

tinggi berbanding ND-G, manakala peningkatan 𝜇c menyebabkan peningkatan 

konduktiviti graphene.  Model graphene (D-G dan ND-G) kemudiannya diintegrasikan 

ke atas substrat dan dimasukkan ke dalam perisian penyelesai mikro gelombang CST 

sebelum disimulasikan untuk menentukan prestasi antena berasaskan graphene (GBA) 

ini. Model-model GBA ini turut menunjukkan penambahbaikan prestasi yang signifikan 

berbanding model-model berasaskan tembaga(1 THz, 1.29 THz, dan 1.49 THz). 

Walaubagaimanapun, penggunaan ND-G tidak selalunya menunjukkan peningkatan 

prestasi yang ketara pada frekuensi MMW (64GH), tetapi peningkatan prestasi ini lebih 

tertumpu kepada jalur operasi yang lebih tinggi. Dua teknik lain (salutan dan lekatan) 

dicadang sebagai kaedah fabrikasi alternatif bagi antena-antena berasaskan graphene. 

Teknik-teknik ini menunjukkan penambahbaikan prestasi yang sama berbanding dengan 

teknik pemendapan terus dalam jalur-jalur MMW (70GHz) dan THz (1.71 THz). Kajian 

ini turut menunjukkan bahawa model antena menggunakan teknik lekatan menunjukkan 

prestasi yang lebih baik berbanding teknik pemendapan terus pada frekuensi MMW. 

Seterusnya, suatu kajian untuk menentukan frekuensi kritikal (CrFr) bagi penggunaan 

ND-G dan tembaga pada frekuensi MMW dan THz telah dijalankan (30GHz-3THz). 

Kajian ini mempertimbangkan topologi dan parameter prestasi ND-G-GBA untuk 

menentukan CrFr. Keluk-keluk parameter prestasi diplotkan melawan frekuensi untuk 

memudahkan perbandingan di antara pelbagai konfigurasi GBA. CrFr ditunjukkan pada 

titik-titik persilangan di antara keluk-keluk parameter prestasi bagi antena berasaskan 

tembaga dan antena berasaskan graphene. Kajian ini turut dilanjutkan untuk GBA di mana 

graphene digunakan sama ada sebagai bumi atau pemancar sahaja. Perbandingan 

topologi, konfigurasi dan parameter antena yang berbeza menunjukkan CrFr yang 

berbeza, di antara 0.130 – 0.240 THz, dengan purata 0.147 THz. Manakala bagi 

konfigurasi antena yang menggunakan graphene sahaja sebagai bumi atau pemancar, 

frekuensi kritikal didapati berada di antara 0.145 – 0.365 THz, dengan purata 0.213 THz. 

Ini menunjukkan bahawa CrFr untuk ND-GBA adalah bergantung kepada topologi antena 

serta konfigurasinya.  
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Modeling and Characterization of Graphene for Efficient Millimeterwave and 

THz Antennas 

 

ABSTRACT 

The development of millimeterwave (MMW) and Terahertz (THz) technologies 

for a wide range of wireless sensing and communication applications have been rapid due 

to the unique characteristics of waves in these bands. Antennas are regarded as the core 

of wireless applications, and its development for efficient operation within these bands 

require the use of new carbon nanomaterials such as graphene. This is due to the 

conductivity deterioration of conventional metals with increasing frequency. This work 

focuses on improving the antenna performance parameters in the MMW and THz bands 

based on the utilization of graphene. The employment of graphene requires mathematical 

modelling and characterization of its surface impedance, which are frequency dependent. 

The chemical potential (𝜇c) (doping) indicated a more significant effect compared to 

other variables. Its values are influenced by electrical bias, magnetic bias, or chemical 

doping. The 𝜇c = 0eV value is used as the non-doped graphene (ND-G) model, while (𝜇c 

= 0.25eV and 𝜇c = 0.5eV) values are used for the doped graphene (D-G) models. D-Gs 

were found to exhibit higher surface conductivities than ND-G, while the increasing 𝜇c 

resulted in increased graphene conductivity. The material models of graphene (D-G and 

ND-G) are then integrated onto the substrate and the microwave solver software CST 

prior to simulations to determine the graphene based antenna (GBA) performance. These 

GBA antenna models indicated significant performance improvement at THz frequencies 

(1 THz, 1.29 THz, and 1.49 THz) compared to the copper-based antenna models. On the 

contrary, the use of ND-G does not always show such significant improvements at MMW 

frequencies (64GH), but is rather more concentrated on the bands beyond it. Two other 

new techniques (coating and adhesives) are proposed as alternative fabrication methods 

of graphene based antennas. These techniques indicated similar parameter improvements 

to that of the direct deposition technique in the MMW (70GHz) and THz (1.71 THz) 

bands. It was also discovered that antenna modeling using the adhesive technique 

performs better than the direct deposition technique at MMW frequencies. Next, an 

investigation to determine the critical frequency (CrFr) for the use of ND-G and copper 

at MMW and THz spectrum (30GHz-3THz) was performed. This study considers 

different topologies and performance parameters of ND-GBA to determine CrFr. The 

curves of the performance parameters are plotted against frequency to facilitate 

comparison between various GBA configurations. The CrFr is determined using the 

intersections of the performance curves for copper-based and graphene-based antenna. 

The investigation is also extended onto GBAs with graphene as ground or patch only. 

The comparison for different antenna topologies, configurations, and parameters reported 

different CrFrs, ranging from 0.130 - 0.240 THz, with an average of 0.147 THz. On the 

other hand, the critical frequencies for the patch and ground only graphene-based 

configurations ranged between 0.145 - 0.365 THz, with an average of 0.213 THz 

indicating that the CrFr of ND-GBA depends on the antenna topologies and 

configurations. 
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1 CHAPTER 1 

INTRODUCTION 

1.1 Background  

Antennas are cohesively related to wireless communications and wireless sensing 

networks (WSN). Beside wireless communications, antennas are also crucial towards 

other applications such as imaging, spectroscopy, sensing, detection, and energy 

harvesting, particularly in frequency spectrums higher than microwaves (MW) band such 

as millimeter wave (MMW) terahertz (THz) and infrared (IR). Figure 1.1 shows the 

architecture of typical wireless sensor nodes and the significance of efficient antenna to 

more than one unit in the node. 

 

Figure 1.1: Architecture of a typical wireless sensor node and the significance of 

efficient antenna in such applications. 
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