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Pengecaman Aktiviti Manusia Berdasarkan Imej-Imej Kedalaman 

ABSTRAK 

Aktiviti Pengiktirafan Manusia (HAR) telah mendapat faedah penyelidikan yang agak 

besar dalam beberapa dekad kebelakangan ini kerana aplikasi yang luas terutamanya dalam 

bidang perubatan, pengawasan, interaksi manusia-mesin, permainan dan hiburan. 

pengekstrakan ciri adalah satu langkah penting dalam algoritma HAR. Walau 

bagaimanapun, pada masa ini kebanyakan penyelidikan memberi tumpuan kepada ciri-ciri 

biasa seperti spatial domain dan domain frekuensi ciri-ciri. Ciri-ciri tersebut tidak 

mempunyai konteks dan tidak menyeluruh dalam alam semula jadi. Malangnya, membina 

ruang ciri yang menyeluruh daripada aktiviti manusia adalah sukar kerana keluasan dan 

jenis uncountable tindakan manusia. Ini membawa kepada masalah yang mencabar mereka 

bentuk sistem HAR yang menggunakan berasaskan konteks ciri pengekstrakan tindakan 

manusia. Dalam karya ini ruang ciri kontekstual komprehensif untuk pengecaman aktiviti 

manusia dibentangkan menggunakan imej kedalaman, jumlah fratures adalah 11. dalam 

aspek klasifikasi, mesin pembelajaran extrem hanya menggunakan lelaran tunggal dalam 

peringkat latihan untuk menentukan berat output. mesin pembelajaran extrem amat 

berkesan kerana ia cenderung untuk mencapai optimum global berbanding dengan kaedah 

pembelajaran FNN tradisional yang mungkin akan terperangkap dalam optimum tempatan. 

Kelemahan algoritma ELM memegang nombor terhingga darjah kebebasan untuk meniru 

satu set data yang diberikan. Ini darjah terhingga kebebasan adalah akibat daripada sifat 

rawak juga wajaran yang ditetapkan antara input dan lapisan tersembunyi. A potensi 

kemajuan yang mungkin dalam prestasi dalam kajian ini boleh dicapai dengan memberikan 

wajaran berdasarkan pengoptimuman functionan Objektif (ELM) menggunakan meta-

heuristik itu. Harmony Cari Algoritma yang merupakan sebahagian daripada fungsi 

pengaktifan meta-heustric dan Tansig yang mengeluarkan neuron tersembunyi un 

diperlukan juga turut dipersembahkan dalam kerja ini. pendekatan yang dikemukakan oleh 

itu menyelesaikan masalah ijazah yang tidak terhingga kebebasan berat input serta 

menghadkan bilangan neuron dalam lapisan tersembunyi, sekali gus meningkatkan prestasi 

algoritma ELM itu. algoritma ELM dioptimumkan kemudiannya digunakan untuk 

melaksanakan pengelasan konteks yang dibangunkan berdasarkan ruang ciri. Ketepatan 

dicapai adalah 100% dalam latihan dan 94.95% semasa ujian dengan tindakan membuang 

dan 100% dalam latihan dan 100% dalam ujian tanpa tindakan membuang. pengoptimuman 

Gready MPE dengan HSO telah acehived ketepatan 94.95%. Selain itu, 60% daripada ciri-

ciri yang telah mencapai ketepatan lebih 100%. Oleh itu, pendekatan yang boleh digunakan 

untuk melaksanakan pengecaman aktiviti manusia untuk pelbagai tujuan. 
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Human Activity Recognition Based On ELM Using Depth Images  

ABSTRACT 

Human Activity Recognition (HAR) has gained considerable research interest in recent 

decades due to its vast applications especially in the fields of medicine, surveillance, 

human-machine interaction, gaming and entertainment. Feature extraction is a key step in 

HAR algorithms. However, at present most research is focused on common features such as 

spatial domain and frequency domain features. Such features lack context and are not 

comprehensive in nature. Unfortunately, building a comprehensive feature space of human 

activities is difficult due to the vastness and uncountable nature of human actions. This 

leads to the challenging problem of designing a HAR system that uses context-based 

feature extraction of human actions. In this work a comprehensive contextual feature space 

for human activity recognition is presented using depth image,the total number of fratures 

is 11. in classification aspect, extrem learning machine uses only a single iteration in the 

training stage to determine the output weights. extrem learning machine is extremely 

effective as it tends to achieve the global optimum compared to the traditional FNN 

learning methods which might get trapped in a local optimum. The drawback of ELM 

algorithm holds an infinite number of degrees of freedom for approximating a given data 

set. These infinite degrees of freedom are a consequence of the random nature of the 

weights assigned between the input and the hidden layer. A possible potential improvement 

in performance in this research can be achieved by assigning the weights based on an 

objective functionan optimization of the (ELM) using the meta-heuristic. Harmony Search 

Algorithm which is a part of meta-heustric and Tansig activation function which remove un 

needed hidden neuron  are also presented in this work. The presented approach hence 

solves the problem of the infinite degree of freedom of the input weights as well as 

restricting the number of neurons in hidden layer, thus increasing the performance of the 

ELM algorithm. The optimized ELM algorithm is then used to perform the classification of 

the developed context based on feature space. The accuracy achieved was 100% during 

training and 94.95% during testing with  throw action and 100% during training and 100% 

during testing without  throw action. Gready optimization of the ELM with HSO has 

acehived an accuracy of 94.95%. Moreover, 60% of the features have achieved an accuracy 

of over 100%. Thus, the approach can be utilized to perform the human activity recognition 

for various purposes.  
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  CHAPTER 1

 

INTRODUCTION 

1.1 Introduction 

Human Activity Recognition (HAR) is defined as a process of identifying human 

actions based on a set of observational data. HAR has gained considerable research interest 

in recent decades due to its vast applications especially in the field of medicine, 

surveillance, human machine interaction, gaming, and entrainment. A robust HAR system 

would change the way humans interact with technology. In the field of medicine, HAR 

systems can be used to assist rehabilitation processes and also used as a supervisory 

monitoring system for patients. In addition, HAR systems provide a huge impact on gaming 

and entertainment industries as it makes the media consumption a much more interactive 

and immersive experience for users. 

Various HAR systems have been developed using different types of sensors. Much 

work has been done in vision-based HAR systems as in the case of Rougier, Meunier, St-

Arnaud, and Rousseau (2011) and  Raptis, M., & Sigal, L (2013). Vision-based systems 

usually suffer from certain limitations such as light sensitivity, background distinction, and 

environmental noise. Hence, other sensing methodologies such as RGB-D based sensing 

and data-based sensing have attracted researchers as in the case of Chattopadhyay and 

Maurya (2014),  Ni et al. (2013), and Aggarwal and Ryoo (2011). Depth information in 
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such systems serves as complimentary information and can improve the robustness of the 

HAR system. 

Furthermore, depth cameras are insensitive to illumination changes and can extract 

skeleton features easier than vision-based systems. Wearable sensors are another way to 

extract data for HAR systems. Lara and Labrador (2013) presented a survey on the 

wearable sensor based HAR systems. 

1.2 Problem Statement 

HAR systems are, in essence, pattern recognition systems and hence have four main 

components i.e. sensing, preprocessing, feature extraction, and classification (Jain, Duin, & 

Mao, 2000). Even though HAR systems have a rich research base, there are certain issues 

lacking in the literature. The work presented hereby will focus on two issues in the existing 

HAR systems namely, feature extraction techniques and classification. 

Feature extraction is a key step in HAR algorithms. In the available literature, most 

research is focused on common features such as spatial domain and frequency domain 

features. Such features however, are lack of context and not comprehensive in nature. 

Unfortunately, building a comprehensive feature space of human activities is difficult due 

to the vastness and uncountable nature of human actions. This leads to a challenging 

problem in designing a robust HAR system that uses context based feature extraction of 

human actions. This work therefore aims to develop a comprehensive contextual feature 

space for human activity recognition such that any similar actions having similar features 

performed by different individuals should be identified by the system. 
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Several classification algorithms such as Support Vector Machine (Khemchandani & 

Sharma, 2016), K-Nearest Neighbor (Chua, Leman, & Pham, 2011), Neural Network (NN) 

based algorithms, and etc. have been proposed in the literature. A common problem in 

those classifiers is the degree of freedom is insufficient to optimize the results of 

classification. This work will focus on a neural network based algorithm known as Extreme 

Learning Machine (ELM)  (Huang et al., 2006). 

Extreme Learning Machine (ELM) algorithm was adopted for human activity 

recognition system. Even though ELM algorithm has better performance than the 

conventional NN, there are two issues that ELM suffers from. First, the input weights of the 

ELM algorithm are randomly assigned. This leads to an infinite number of degree of 

freedom for approximating a data set. Second, the number of neurons in the hidden layer of 

ELM is assigned arbitrarily. Both of these issues limit the optimization performance of 

ELM algorithm. Niu, Ma, Li, Yan, and Li (2016) identify the same problems with the ELM 

algorithm and proposed a self-adjusting ELM (SA-ELM) based on the idea of the improved 

the  teaching  learning based optimization, the input-weights and the bias of hidden layer of 

extreme learning machine are adjusted with ―teaching phase‖ and ―learning phase‖ to 

minimize the objective function values. This work hence aims at optimizing the ELM 

algorithm in the two identified areas. 

1.3 Motivation 

The motivation for developing a robust HAR system arises from the many fold 

applications that such systems have. As mentioned, HAR systems provide huge benefit in 
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the field of medicine and medical care. Loblaw, Nielsen, Okoniews, and Lakhani (2013) 

presented a system for respiratory sensing using an infrared camera. A similar sleeping 

respiration measurement system was also introduced by Kuo, Lee, and Chung (2010). 

Furthermore, a nursing care monitoring system for understanding human behavior using 

HAR was discussed in Liu, Chung, Chung, and Thonnat (2007). In addition, HAR systems 

are also applied in video surveillance. Vishwakarma and Agrawal (2013) provided a 

framework for application of human action recognition in video surveillance. Human 

Machine Interaction is yet another area of interest in HAR systems. Chaudhary, Raheja, 

Das, and Raheja (2011) presented a survey of human machine interaction using hand 

gestures. 

HAR is needed for wide range of applications to provide the perception 

functionalities. For example: with HAR robots can deal with human in more effective way. 

Moreover, different services with HAR can be automated without the need to human being.  

Due to the vast area of application of HAR systems, it is incentivizing to develop a 

robust and comprehensive HAR system that caters to such applications. 

1.4 Research Questions 

The research questions of this work are as follows: 

i. How to develop a computational scheme for feature development that is scalable 

and comprehensive in nature. 

ii. How to develop and optimize the ELM algorithm in order to get an improved 

performance. 
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1.5 Objectives 

This research aims at achieving certain objectives which are as follows: 

i. To develop a scalable scheme for feature development in HAR system. 

ii. To develop an optimization scheme of Extreme Learning Machine (ELM) algorithm 

for classification purposes. 

iii. To evaluate the developed schemes and algorithms using standard benchmark data. 

1.6 Scope 

The research presented in this work operates under a set  of scope. First, an RGB-D 

camera was used for the detection of human activity. The Kinect sensor contains many 

advanced sensing hardware such as RGB camera and a depth sensor that provide full-body 

3D motion capture. Furthermore, the Kinect is known for its capability of human skeletal 

tracking making it a better choice over a regular RGB camera. The research used only one 

stationary camera to collect the human activity data. There are no other sensors such as 

inertial measurement sensor, wearable sensors, and etc. that are used to collect the data. 

There are 10 action types: walk, sit down, stand up, pick up, carry, throw, push, pull, wave 

hands, clap hands. There are 10 subjects; each subject performs each action twice (as the 

design of the UTkincet data set). Lastly, the data collected is divided into training data and 

testing data such that a part of the data is used for training purposes and the remaining part 

is used for testing purposes. 
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1.7 Contribution 

The contributions of the research presented are as follows: 

i. The research presented a computational scheme for development of features in 

HAR system. 

ii. A Harmony Search Optimization (HSO) was introduced to assign input weights for 

the ELM algorithm. The proposed (HSO) introduces roulette probability 

distribution to select the harmonics. The roulette probability distribution helps in 

selecting harmonics from the memory according to their fitness. Furthermore, a 

Tansig activation function was used to limit the number of hidden layer neurons in 

order to improve the performance of the ELM. 

1.8 Thesis Outline 

This thesis consists of five chapters namely, Introduction, Literature review, 

methodology, Experimental results, and Conclusion. 

In chapter one, the overview of human activity recognition and their applications is 

described. The problem statements, objectives, and research scope are also presented. 

Chapter two reviews the literature of features representation in HAR such as Space-

time Features, Frequency Features, Local Descriptor, Optical Flow Based, and Skeleton 

Joints. In addition, the role of classifier in the HAR system is also described. 

Chapter three presents the design of skeleton based features for human activity 

recognition. The chapter presents the process of joint reduction and defines different 

features used for HAR. The chapter discusses the action provided by UTkinect dataset and 
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