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Pelaksanaan Platform Terbenam Berbasis Awan untuk Pengesanan Objek dan 

Pengiktirafan 

ABSTRAK 

Dengan kemajuan baru-baru ini dalam model visi komputer berasaskan pembelajaran 

yang mendalam, pengesanan objek dan aplikasi pengiktirafan seperti pengawasan video, 

Bio-Imaging, kereta autonomi semakin meningkat. Teknik pengesanan objek 

memerlukan beberapa dataset imej, memori, mesin dengan GPU untuk melatih algoritma 

dan mempunyai penggunaan kuasa yang tinggi. Platform terbenam dicirikan oleh 

penggunaan kuasa rendah, ruang, dan sumber tenaga yang membuat penggunaan 

algoritma pada mereka sukar. Untuk mengatasi kelemahan ini, algoritma pengesanan 

(Faster R-CNN) dilatih dan diuji dengan dataset imej yang diperoleh dari ImageNet. 

Algoritma ini dilaksanakan pada komputer dengan MATLAB. Peranti pengambilan 

gambar dibentuk menggunakan Raspberry pi dan pi kamera untuk menangkap, 

memproses dan menghantar imej ke pengesan melalui platform cloud Dropbox dengan 

Python. Platform Dropbox berfungsi sebagai antara muka antara Raspberry pi dan 

pengesan jauh. Pengesan dilatih untuk mencari lima kelas objek iaitu Broom, Fan, 

Keyboard, Mouse, dan Televisyen. Pengesan objek berbilang kelas telah dilatih pada 

2500 imej dengan setiap kelas mempunyai 500 imej pegun dan diuji pada 500 imej pegun. 

Sistem ini diuji dalam masa nyata dengan menangkap imej pada Raspberry pi dan 

menghantarnya ke dan dari pengesan menggunakan akses internet untuk menentukan 

tempoh proses. Ketepatan pengesan diukur menggunakan metrik ketepatan purata (AP) 

untuk setiap kelas dan mengira metrik purata ketepatan purata (mAP) untuk semua kelas. 

Pengesan objek berbilang kelas mencapai Purata Purata Ketepatan (mAP) sebanyak 0.67 

dan keseluruhan prosedur sistem dari imej yang ditangkap ke paparan akhir dilaksanakan 

dalam purata 45 saat. 
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Implementation of a Cloud-Based Embedded Platform for Object Detection and 

Recognition 

ABSTRACT 

With the recent advancements in deep learning-based computer vision models, object 

detection and recognition applications such as video surveillance, Bio-Imaging, 

autonomous cars are increasing in number. Object detection techniques require some 

large image datasets, memory, a machine with GPU to train the algorithm and have high 

power consumption. Embedded platforms are characterized by low power consumption, 

space, and energy resources making the deployment of the algorithms on them difficult. 

In order to overcome these drawbacks, the detection algorithm (Faster R-CNN) is trained 

and tested with an image dataset obtained from ImageNet. This algorithm is implemented 

on a computer with MATLAB. An image acquisition device is set up using the Raspberry 

pi and pi camera to capture, process and send images to the detector via Dropbox cloud 

platform with Python. The Dropbox platform serves as an interface between the 

Raspberry pi and the remote detector. The detector was trained to locate five classes of 

objects which namely Broom, Fan, Keyboard, Mouse, and Television. The multi-class 

object detector was trained on 2500 images with each class having 500 still images and 

tested on 500 still images. The system was tested in real-time by capturing images on the 

Raspberry pi and transmitting it to and from the detector using internet access in order to 

determine the process duration. The detector accuracy is measured using the average 

precision (AP) metric for each class and calculating the mean average precision (mAP) 

metric for all classes. The multi-class object detector achieved a mean Average Precision 

(mAP) of 0.67 and the entire system procedure from image capturing to the final display 

was executed in an average of 45 seconds. 
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CHAPTER 1 : INTRODUCTION 

1.1 Overview 

In recent years, computer vision domain has not been left out from thriving due 

to the endless efforts of researchers and significant advancement in related fields. 

Computer vision uses digital images to model and emulates human vision using a 

computer through three major steps. These steps are image acquisition, image processing 

with the third being image analysis and understanding. As a result of this, applications of 

computer vision such as pattern recognition, medical imaging, 3D model building, 

surveillance, object detection and recognition, face detection has been made a reality. 

Object detection is basically determining instances of real-world objects in 

images or videos while object recognition is the identification of target objects in still 

images or videos (MathWorks, 2019). Feature extraction is the first step when detecting 

an object in an image. It is a process whereby key points in an image is located and 

obtaining the required information in that location. Good Features to Track (GFTT) and 

Scale Invariant Feature Transform (SIFT) algorithms were used to extract important 

features of an object in images. These algorithms, however, involved heavy floating 

points calculations and were computationally complex making them unsuitable for real-

time embedded platforms. The Speeded Up Robust Features (SURF) algorithm was 

proposed by Bay et al. in ECCV 2006 conference. Its performance is on par with SIFT  

and is faster compared to the former (Panchal et al., 2013). The major advantage of SURF 

is that it uses an integral image for feature detection and description which heightens the 

process efficiency. Nevertheless, SURF like other feature-based algorithms is 
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computationally expensive and frequently brings about a very low frame rate (Zhao et 

al., 2013).  

The emergence of intelligent features in notes, tablets, surveillance, smartphones 

and automotive systems which have ready-made features for capturing images lead to the 

need for more advanced algorithms with lesser computational complexity and higher 

accuracy. This resulted in the introduction of a deep learning algorithm which is vector 

accelerated like Convolutional Neural Networks (CNN) for classification, localization, 

and detection of objects in images. As regards deep learning, object detection is a subset 

of object recognition, where the target object is not only identified but also located in still 

images and videos. As depicted in Figure 1.1, bounding boxes are drawn around the 

objects to be identified which in this case is a person and a dog. The CNN is a deep 

learning algorithm that is flexible, adaptive and higher in its accuracy. It allows quick 

tuning to new objects without changing the algorithm. The level of accuracy of the CNN 

algorithm is dependent on the quantity of the image dataset. The algorithm yields a less 

accurate for smaller data but shows significant accuracy on the large image datasets. 

Hence, CNNs require a large number of labelled datasets to perform computer vision-

related tasks (Pathak, Pandey, & Rautaray, 2018). 
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Figure 1.1 Localization and Identification of objects  

Source: Pyimagesearch (2017) 

 

1.2 Problem Statement 

Traditionally, image acquisition devices are bulky, complex and expensive. With 

the growth of the various field in technology, prices and sizes of these systems have 

reduced significantly. Image acquisition is one of the main processes in computer vision 

where an image is captured and sent to a computer or embedded device through an 

interface. It is an important preliminary action taken to generate image data (Martynenko, 

2017). Conventional image acquisition systems have slow processing speed and require 

a computer or workstation to pre-process the images. Furthermore, due to their bulkiness, 

they are not portable and are difficult to be integrated with other systems. In an efficient 

detection system, it is pertinent that tasks of capturing, displaying as well as the 
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processing of images are incorporated (Liu, Liang, & Cheng, 2011). The availability of 

embedded platforms which are reliable, portable, easy to use, have low energy 

consumption with prices on the low side has increased (Fuente, González-Castro, 

Fernández-Robles, & Alegre, 2015). These merits make the embedded system suitable 

for the role of acquiring images. 

The emergence of deep convolutional neural networks largely boosted the 

development of several artificial intelligence applications.  These networks are often 

filled with hundreds to thousands of interconnected layers in which computation of 

millions of parameters from a frame of sensor data is required for a single classification 

(Lane et al., 2017). Deep neural networks such as CNN performs excellently compared 

to traditional algorithms at the cost of complex computation and energy consumption. 

Fast Region-Based Convolutional Neural Network (Fast R-CNN) is a deep neural 

network introduced by Girshick, (2015a) as a further development to the previous work 

which is Region-Based Convolutional Neural Network (R-CNN) to detect and classify 

objects in images. Lee, Son, Kim, & Park, (2017) stated that general-purpose computer 

with the only CPU becomes heavily loaded and more often cannot achieve the real-time 

requirements when implementing the algorithm except when equipped with Graphics 

Processing Units (GPU). To overcome the limited computing resources and energy 

supply of the embedded systems, Mao et al., (2018) implemented Fast R-CNN on the 

board by modifying the algorithm to fit the specific embedded platform or implementing 

a CPU + GPU platform. Although this solution gave a satisfactory result, the cost and 

complexity of the implementation increased. 
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Significant resources have been expended towards building user-friendly and 

smart applications on embedded devices. The application of deep neural network on these 

devices could amount to a generation of applications that is capable of performing 

recognition tasks to support a higher level of interaction between man and his physical 

environment (Yao et al., 2018). In the Internet of Things (IoT) hardware design, 

embedded platforms such as Raspberry pi with minimal specifications such as little 

computational capability (1Gigabyte of RAM), energy resources (works on 5V and 

limited memory) compared to computer or workstation are typically used. These IoT 

devices can be designed for any application and able to transmit and receive data through 

the network. The Raspberry pi is a Single Board Computer (SBC) that is affordable, 

small-sized and is easy to work with, but with the limited resources needed to implement 

the deep learning algorithms. In addition, a significant amount of memory is required to 

store the large dataset used when training the deep neural network. The need to evaluate 

the performance of the proposed IoT system arises for further improvement. 

1.3 Research Questions 

The goal of this research is to design an embedded system which detects and 

recognize objects in images. The first question that comes to mind is if the SBC can 

execute the detection algorithm which in this case is Faster R-CNN. The next question is 

if the Raspberry pi has good and stable connectivity to transmit and receive data. 

Moreover, if the object detection and recognition algorithm can be executed on a remote 

computer serving in a short amount of time. Lastly, whether the developed system gives 

a good performance. 
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1.4 Research Objectives 

The objectives of this research are summarized as follows: 

1. To develop an image acquisition and processing platform using Single 

Board Computer (SBC). 

2. To implement Faster R-CNN algorithm for object detection and 

recognition. 

3. To evaluate the overall performance of the system in terms of accuracy 

and processing time. 

1.5 Research Scope 

In the proposed study, the Raspberry pi 3 model B and Python programming 

language is used to develop the image acquisition device are used while MATLAB is 

used for the object detection and recognition algorithm. The Faster R-CNN algorithm 

will be evaluated by its accuracy in detecting and recognizing the objects in the image. 

This work is limited to RGB images downloaded from ImageNet containing five object 

classes (Broom, Fan, Keyboard, Television, Mouse) for training and testing the 

algorithm.  Real scene images which were captured by the Raspberry pi is used to 

evaluate the whole system. The cloud storage platform used as an interface in this work 

is Dropbox. 
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1.5.1 Dissertation Organization 

This dissertation is organized into five chapters and the composition of each 

chapter as summarized as follows:  

1.  Chapter 1 presents the background of the subject matter as well as the 

problem statement, objectives and scope of the research. The layout of the 

dissertation is also included. 

2. Chapter 2 is the literature review which consists of the comparison 

between some Neural Networks as well as a review of the past study on 

deep learning techniques. Previous works of image processing using the 

FPGA, DSP, and SBC is revised and lastly, general information and 

background of the Raspberry pi are discussed. 

3. Chapter 3 involves the methodology. In this section, the description of the 

technique applied in the study, procedures, the block diagram of the work 

as well as the Raspberry pi setup is explained. 

4. Chapter 4 portrays the results of the object detector training and testing on 

the ImageNet dataset offline. Likewise, the outcome of the system when 

an image is captured by the acquisition device and processed online with 

a detailed explanation of it. 
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5. Chapter 5 concludes the achievements of this study objectives with future 

work recommendation.
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CHAPTER 2 : LITERATURE REVIEW 

2.1 Introduction 

In recent decades, the domain of computer vision has witnessed researches due to 

the vast applicability in fields such as video surveillance, robotics, autonomous systems, 

and scene understanding. Object detection and object recognition are related techniques 

that play vital roles in the computer vision domain. According to Pathak et al. (2018), 

object detection is carried out by determining the instance of the class which the object 

belongs and putting a bounding box around the object in order to estimate its location. 

Detection of an object can be a single class object detection where a single instance of 

the class is detected from an image or multi-class object detection in which the classes of 

all object in the image is detected (Pathak et al., 2018). Generally, the object detection 

task is in three-phase, candidate regions are selected, features are extracted based on these 

regions, after which the classification task is done using pre-trained models (Guan & Zhu, 

2017). Object recognition aims at the accurate identification of the target object from an 

image (Wu, Bie, Guo, Meng, & Zhang, 2017). it involves identifying a target object in 

an image from a series of well-known tags. The techniques of object recognition can be 

classified based on 2D or 3D image information. Face, leaf, fruit, pattern, alphabets are 

examples of objects that can be detected and recognized. 

In order to detect an object, an idea of the possible position of the object and how 

the image is segmented is needed. This poses a kind of chicken-and-egg problem whereby 

the location of an object should be known so as to recognize its shape and class, and to 

know its location, the shape of the object is needed(Dirk, Laurent, Maximilian, Tomaso, 
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& Christof, 2002). Visually dissimilar features like clothes, shoes, bag, face or a person 

may be part of a particular object but for the detector to know this, the object must be 

recognized first while some objects slightly stand out from the background thus requiring 

separation before it is recognized(Uijlings, Sande, Gevers, & Smeulders, 2013). 

According to Kumaran & Reddy (2017), object detection can be generally 

classified into three;  motion-based detection, feature-based detection, and template-

based detection. In the motion-based method, the detection depends on the grouping of 

visual motion consistencies. For feature-based detection, image alignment or frame 

registration is quite essential. The transformation of a different domain of images into a 

single domain is considered. Hence illumination, orientation and the size of the image 

play a vital role in this approach. This approach can be categorized as shape-based and 

colour-based methods. The procedure of shape-based or edge-based approach is filtering, 

enhancement and identification. The procedure works based on the Expected 

Maximization (EM) calculation of parameters in a random manner. In picture processing, 

an image acquisition device is used to capture the image, features are identified by the 

algorithm, putative factors are collected and objects are detected using HAAR classifier 

and Viola Jones framework (Neelima, Srikrishna, & Rao, 2017). 

For template-based detection, the result is accurate provided that the template of 

the object with a high degree of precision is available. It can be further classified into 

fixed template matching and deformable template-based detection. In the fixed template, 

image is subtracted and matched by correlation. Deformable template matching is defined 

by the bitmaps describing the characters of the edges or shape of the object. It is 
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applicable when the object varies between the rigid and non-rigid deformations (Kumaran 

& Reddy, 2017). 

2.2 Object Detection and Recognition Techniques 

Deep learning and machine learning are some of the approaches used in object 

recognition. These techniques learn to identify target objects in images using different 

approaches. Machine learning algorithms do not reply on models, they instead “learn” 

information from data directly. The performance of these algorithms improves with an 

increase in available samples for the learning process. This approach is suitable for 

problems where lots of variables and data is available but there is no existing model or 

equation.  In general, machine learning algorithms fall into three categories namely-  

supervised learning, unsupervised learning and semi-supervised learning (Rosebrock, 

2017). Deep learning is a flexible technology which has achieved a very high level of 

accuracy making it essential in applications such as driverless cars and speech 

recognition. This approach requires substantial computing power and a large amount of 

labeled data. Deep learning models are trained using neural network architectures and a 

large number of labeled data that learn features from data directly without manual feature 

extraction. Deep learning models have been proposed for several machine learning 

assignments such as Convolutional Neural Network (CNN), Deep Believe Network 

(DBN), and Deep Sparse Coding (DeepSC). The CNN technique is best suitable for 

image-based tasks such as face recognition and character recognition (Y. Ren, Chen, Li, 

& Kuo, 2018). 
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