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Pembentukan Sokongan Asas Sifat dalam Mesin Pemodelan Pengendapan 

Melakur  

 

ABSTRAK 

 

Pembentukan Sokongan Asas Sifat merupakan teknik yang dicadangkan di dalam 

mesin Pemodelan Pengendapan Melakur. Teknik ini mampu memberi maklumat tentang 

isipadu dan bilangan struktur sokongan di mana ia berkait rapat dengan penghalaan 

pengendapan  model. Terdapat dua jenis asas sokongan dalam pembentukan model 

produk Pemodelan Pengendapan Melakur, iaitu Asas Sokongan Sendiri dan Asas 

Sokongan Luaran. Asas Sokongan Sendiri tidak memerlukan bahan sokongan manakala 

Asas Sokongan Luaran melibatkan penggunaan bahan sokongan tambahan dalam 

pembentukannya. Pada masa kini, pelbagai teknik telah dicadangkan untuk mengenal 

pasti sifat adalah terhad kepada proses pembuatan yang spesifik. Daripada aspek yang 

lain, proses perancangan LM adalah tidak automatic sepenuhnya dan menjuruskan ke 

arah penurunan kualiti produk dan meningkatkan keupayaan untuk membuat kesilapan. 

Tambahan pula, banyak kesilapan yang terjadi adalah di sebabkan penglibatan manusia 

dalam proses yang kritikal ini. Isu lain ialah format fail STL yang digunakan untuk 

memindahkan data CAD kepada proses perancangan pembuatan berlapis menghasilkan 

kehilangan maklumat rekabentuk dan fungsi sifat. Penentuan Penghalaan Pengendapan 

Model yang optimum adalah didapati sukar dan mengambil masa yang panjang untuk 

dibina yang mana ianya dipengaruhi oleh kelajuan dan pertukaran hujung muncung ketika 

pemendapan bahan. Objektif utama tugasan ini adalah untuk mengintegrasikan antara 

Rekabentuk Terbantu Komputer dan Pembuatan Terbantu Komputer dengan 

menggunakan teknik asas sifat. Ini dapat membantu dalam mengautomasikan 

perancangan proses Pemodelan Pengendapan Melakur sebelum pembuatan model dengan 

pengurangan ralat manusia. Dalam tugasan ini, jumlah minimum isipadu dan bilangan 

struktur sokongan dipilih bagi menentukan penghalaan pengendapan model yang 

optimum. Tugasan yang dijalankan juga tertumpu kepada penambahbaikan kawasan 

permukaan tidak bersentuh di antara struktur sokongan dan model.Ketepatan rangkaian 

ditentukan melalui lima struktur MLP (Struktur 1 hingga 5). Ketepatan untuk semua 

struktur MLP pada spesifik nod adalah dianalisi. Hasil gabungan struktur MLP 1 dan 

MLP 2 adalah dengan jumlah isipadu dan bilangan struktur sokongan yang minimum 

akan dipilih sebagai Penghalaan Pengendapan Model yang optimum. Proses 

mengoptimumkan parameter ini dilakukan dengan menggunakan rangkaian neural buatan. 

Proses mengoptimumkan jumlah isipadu dan bilangan struktur sokongan dilakukan 

dengan menggunakan rangkaian neural buatan. Paramter ini juga perlu dipertimbangkan 

disebabkan kos fabrikasi dan masa pembinaan. Model yang telah melalui proses 

penambahbaikan seterusnya dihasilkan dengan menggunakan mesin FDM-3000. 

Keputusan Penghalaan Pengendapan Model yang optimum dibandingkan dengan model 

yang telah digunakan di dalam kerja-kerja yang terdahulu. Hasil kajian ini menunjukkan 

bahawa penghalaan yang sama telah dikenalpasti. Keputusan eksperimen juga 

menunjukkan bahawa persentuhan antara struktur sokongan dan model telah 

ditambahbaik sebanyak 38%. Permukaan tidak bersentuh pada kawasan yang tidak 

diperlukan dari kedudukan yang paling atas hingga kedudukan yang paling bawah oleh 

struktur sokongan telah dihasilkan. Teknik ini juga boleh digunakan dalam percetakan  

teknologi 3D terkini. 
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Feature-based Support Generation in Fused Deposition Modeling Machine 

(FDM) 

 

ABSTRACT 

 

Feature-based Support Generation is a technique that has been proposed in Fused 

Deposition Modeling (FDM) machine. This technique can provide information of volume 

and amount of support structure which are closely related to orientations of part 

deposition. There are two types of support features in FDM part model development, 

which are Self-Supported Features (SSF) and External-Supported Features (ESF). The 

SSF requires no support material while ESF involves the use of additional support 

material in their fabrication. Currently, various techniques have been suggested to 

identify features are limited to a specific manufacturing process. In other aspect, the LM 

process planning is not fully automatic and lead to part quality degradation and increases 

the possibility of making errors. Furthermore, many errors are occurred due to the 

involvement of human in this crucial process. Other issue is that the Stereolithography 

(STL) file format representation is used to transfer the CAD data to the LM process 

planning resulting to the loss of design and functional feature information. Determining 

the OPDO was found to be difficult and consumed longer build times that influenced by 

the speed and the change of nozzle's tip during material deposition. The main objective 

of this work is to integrate between Computer Aided Design (CAD) and Computer Aided 

Manufacturing (CAM) using a feature-based technique. This will help in automation of 

FDM process planning prior to the manufacturing of part model with less human error. 

In this work, the minimum volume and amount of support structure are selected in order 

to determine the optimum part deposition orientation. This work also focuses on the 

improvement of the non-contact surface area between the support structure and part 

model. The accuracy of the network is determined through five MLP structures 

(Structures 1 to 5). The accuracies for all MLP structures at specific hidden nodes are 

analysed. The output of combination of MLP 1 and MLP 2 structures with a minimum 

total volume of support structure and a minimum number of support structure will be 

chosen as an OPDO. The optimization of total volume of support structure and number 

of support structure is performed using an Artificial Neural Network (ANN). These 

parameters are also to be considered due to their fabrication cost and build time. The 

improved part model is then manufactured by using a FDM-3000 machine. The results of 

OPDO are compared with the models that have been used in previous works. The findings 

show that the same orientation is identified. The experimental results also show that the 

contact between the support structure and part model is improved by 38%. The non-

contact surface at unnecessary area from the top to the bottom of developed support 

structure was produced. This similar technique can also be used to produce the part using 

a current technology of 3D printing. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Overview 

 

Traditionally, design and manufacturing activities in industry are performed at 

separate sections. The design engineer designs the part prior to the development of 

operation sequences by manufacturing engineer. However in some cases, the 

modification of design must be made by manufacturing engineer for some reasons such 

as manufacturability and cost of the product. The modified design will affect the original 

functions of the product. The changes in design delay the marketing, hence, reduce its 

market competitiveness. In conventional manufacturing, the integration of design and 

manufacturing of a product is therefore needed in order to reduce the design lead time 

(McMahon et al., 1993; Zulkifli, 1999).  

The scenario of prototype development in industry has changed. The development 

requires to introduce the product faster to the market at lower cost with less design 

modification. This requirement demands on how to shorten the product design time, the 

development cycle and reduce development cost. The product must also be able to form 

with any geometric complexity in various applications in order to increase the 

competitiveness (Daniel et al., 2014; Shuaib et al., 2015; Xueling et al., 2012; Zhenwen 

et al., 2015). 

Layered Manufacturing (LM) is found to have new possibilities to fulfil the 

changes in this scenario (Dai et al., 2014; Daniel et al., 2014; Ivanova et al., 2013; 
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Novakova-Marcincinova et al., 2012; Yang et al., 2014). The first LM process was 

developed by Charles Hull in 1986. The LM is a volume additive manufacturing process 

in which 2D layer-by-layer deposition of material is stacked gradually from lower to 

upper to develop 3D physical model directly from Computer Aided Design (CAD). This 

technology is able to build any complex shapes which are nearly impossible to carry out 

by using conventional machines. In LM, most of CAD data are converted into 

Stereolithography (STL) file format before transferring them to the machine. A major 

advantage of this technology is that the designer has the ability to actually print out any 

ideas and creativities without limit.   

The steps involve in LM start with the development of CAD model. Current 

activities in LM require human involvement in order to integrate between CAD and CAM 

systems especially to determine the orientation of part deposition in process planning. 

The errors and the repeating LM cycles due to human involvement lead to the 

development of automatic system for all steps in process planning.  

In this research, the feature is introduced in order to automate the selection of 

orientation of part deposition in Fused Deposition Modeling (FDM) machine. The FDM 

is an extrusion-based LM process which requires support generation to prop up hollow 

geometrics and overhanging features of a part during manufacturing process. The features 

that have been identified in FDM process planning is as the key elements in the integration 

of orientation of part deposition and support generation (Kulkarni et al., 2000).  

This work will focus on manufacturing feature in FDM. The feature is considered 

to represent the way how to manufacture it.  It can be extracted by decomposing the 

successor layer into volumetric units belong to non-support or support feature 

(overhanging area). The non-support feature is defined as successor layer areas or 

volumes which have full support from the immediate previous stacked layers, while the 
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support feature is known as successor layer areas or volumes covered partially or may not 

be covered at all by the immediate previous stacked layers. The External-Support 

Structures (ESSs) are employed to improve the manufacturability of layers which do not 

have a layer adjacency or with only partial adjacency in the build direction (Yang et al., 

2003). 

In FDM, the support features contain Self-Supported Feature (SSF) and External-

Supported Feature (ESF).  This work focuses on extracting ESF which is able to 

determine the volume and number of ESS. These features will be studied in details for 

the optimization of part deposit orientation in FDM.  

The ESS traditionally has contact with the part model that tend to degrade the 

quality of surface finish (Ahn et al., 2005, 2007; Alexander et al., 1998; Majhi et al., 

1999; Pandey, 2003). This problem can be resolved by implementing the concept of 

features during fabricating the support structure.  

 

1.2 Definition of Feature 

 

In manufacturing process, features are used to integrate between CAD and CAM 

systems. In general, feature can be divided into three categories and they are:                           

1) Functional feature,  which is related to their function, design and performance; 2) 

Design feature, which is expressed in geometric terms, primitive design functions (such 

as block, cylinder and slot) and their combination and 3) Manufacturing feature, is that 

the volumetric unit to be removed or added in conventional machining and LM, 

respectively, during manufacturing processes (Salomons et al., 1993). Through features, 

the integration between CAD and Computer Aided Manufacturing (CAM) systems can 

be used to resolve this problem. 
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The Artificial Neural Network (ANN) is used to optimize the orientation of part 

deposition based on the total volume and number of support structure as a main input 

parameters. 

 

1.3 Statement of the Problems 

   

The issues related to this work are identified and stated in this section.  

i. Feature-based technique is highly significant for integrating CAD and CAM 

systems. Various techniques have been suggested in this system to identify 

features but they are limited to specific manufacturing process (e.g. volume 

removal for Computer Numerical Control (CNC) machining. (Kerbrat et al., 

2010).  

ii. In manufacturing process, the LM process planning is not fully automatic and lead 

to part quality degradation (e.g. dimensional accuracy and surface finish) (Pandey 

et al., 2007) and increases the possibility of making errors. In this process 

planning, most of the steps such as creation of geometric model using a solid 

modeler, determination of suitable deposition orientation, slicing, generation of 

material deposition paths, part deposition and then post processing operations are 

done automatically except the orientation of part deposition. The specific 

manufacturing standard makes feature-based techniques difficult for the 

manufacturing system to adopt an existing feature extraction system.  

iii. There is no generic interface to accommodate the use of features in the LM 

process. Furthermore, the Stereolithography (STL) file format (as a de facto 

standard) representation is used to transfer the CAD data to the LM process 

planning resulting to the loss of design and functional feature information. 
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iv. In feature extraction, it is difficult to reconstruct geometric and manufacturing 

features from a volume enclosed by spatial triangles without any topological 

relationship (Yang et al., 2003).  

v. Other issue is also related to the process planning in selecting the Optimum Part 

Deposition Orientation (OPDO). Furthermore, many errors are occurred due to 

the involvement of human in this crucial process.  Determining the OPDO was 

found to be difficult and consumed longer build times that influenced by the speed 

and the change of nozzle's tip during material deposition for both part model and 

support (Thrimurthulu et al., 2004).  

In FDM, there is only one build direction (vertical direction). Hence, the 

adjacency is considered in a single building direction. This study is work on the system 

that can extract the features with respect to the FDM. The ANN is proposed in this system 

in order to automate the process planning for selecting the OPDO. 

 

1.4 Research Objectives 

 

The objectives of the research are listed below. 

i. To employ a Feature-based Support Generation data extraction technique to 

automate the process planning in FDM.  

ii. To select the OPDO through features in which the information of support structure 

can be determined. The automation of this work can be achieved by the integration 

between CAD and CAM. 

iii. To improve the contact areas between part model and support structures using 

extracted features. The reduction of unnecessary support volume assures to 
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enhance the surface quality of final part model by reducing unnecessary support 

volume. 

 

1.5 Scope of Research Work 

 

The scope of this work involve the use of Artificial Intelligence (AI) to determine 

the optimum part deposition orientation. Six pre-defined orientations of the part are 

identified. Two main parameters, the total volume of support structure and the number of 

support structure which have a significant effect on final product are chosen.  The 

optimization approach using ANN is used for this purpose. The work is also looking at 

the improvement of the parts’ surface using feature-based technique. Overall, the 

activities in process planning of FDM machine will be automated.  

 

1.6 Organization of the Thesis 

 

The thesis is presented in six chapters as follows: 

Chapter 1 introduces the background of Layered Manufacturing (LM) technology. 

The problem statement and objectives of the research are stated. It also gives the 

overviews of the topics to be included in the thesis. 

Chapter 2 reviews the work in the field of feature-based method and process 

planning in LM. The emphasis on the systems that utilize the Artificial Intelligent (AI) 

approach for selecting the OPDO are presented. 

Chapter 3 describes the methodology and system organization of the Feature-

based Support Generation system developed in this work. This methodology is applied 

when dealing with the support features for generating the support structure.  
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