Show simple item record

dc.contributor.authorMurugesa Pandiyan, Paulraj, Prof. Madya Dr.
dc.contributor.authorSazali, Yaacob, Prof. Dr.
dc.contributor.authorMohd Rizon, Mohammed Juhari, Prof. Dr.
dc.contributor.authorSivanandam, S. N.
dc.contributor.authorMuthusamy, Hariharan, Dr.
dc.date.accessioned2011-10-28T08:18:52Z
dc.date.available2011-10-28T08:18:52Z
dc.date.issued2007-10-25
dc.identifier.citationp. 779-784en_US
dc.identifier.urihttp://dspace.unimap.edu.my/123456789/15128
dc.descriptionOrganized by Universiti Malaysia Perlis (UniMAP), 25th - 26th October 2007 at Putra Brasmana Hotel, Kuala Perlis, Perlis, Malaysia.en_US
dc.description.abstractThe discrimination of normal and pathological voices using noninvasive acoustic analysis helps to perform accurate identification of voice disorders and diagnoses of vocal and voice disease. Acoustic analysis is a non- invasive technique based on digital processing of the speech signal. In the recent years, acoustic analysis of normal and pathological voices have become increasingly interesting to researchers in laryngology and speech pathologies. This paper presents classification of pathological voices using neural network trained by Back propagation algorithm with slope parameter and BP with binary sigmoidal and Gaussian activation function. Simulation results indicate that the proposed algorithm provide better classification rate than conventional back propagation algorithm.en_US
dc.language.isoenen_US
dc.publisherUniversiti Malaysia Perlis (UniMAP)en_US
dc.relation.ispartofseriesProceedings of the Conference on Applications and Design in Mechanical Engineering (CADME07)en_US
dc.subjectAcoustic analysisen_US
dc.subjectAcoustic featuresen_US
dc.subjectNeural networken_US
dc.subjectSlope parameteren_US
dc.subjectGaussian activation functionen_US
dc.titleIdentification of vocal and voice disordersen_US
dc.typeWorking Paperen_US
dc.contributor.urlpaul@unimap.edu.myen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record