Show simple item record

dc.contributor.authorFarid, Ghani, Prof. Dr.
dc.contributor.authorJilani, Musfira
dc.contributor.authorRaghav, Mohit
dc.contributor.authorFarooq, Omar
dc.contributor.authorYusuf Uzzama, Khan
dc.date.accessioned2013-06-26T09:36:08Z
dc.date.available2013-06-26T09:36:08Z
dc.date.issued2012-04
dc.identifier.citationVol. 2, p. 736-740en_US
dc.identifier.isbn978-898867867-1
dc.identifier.urihttp://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6268597&tag=1
dc.identifier.urihttp://dspace.unimap.edu.my/123456789/26229
dc.descriptionLink to publisher's homepage at http://ieeexplore.ieee.orgen_US
dc.description.abstractThis paper investigates effectiveness of using a non-invasive Electroencephalographic (EEG) activity for Brain Computer Interface, to analyze the brain activity and translate human elbow movement into the movement of an artificial actuator. Simple time domain statistical features (mean, variance, skewness, kurtosis, energy, inter quartile range and median absolute deviation) are extracted to detect left to right and right to left elbow movement by using a linear discriminant function based classifier. A robotic arm is used to mimic human elbow movement and its movement was controlled by the classifier's output. An overall accuracy of 73% is achieved in the classifications of two elbow movement using EEG signal.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.ispartofseriesProceedings of the 8th International Conference on Computing Technology and Information Management (ICCM) 2012en_US
dc.subjectArtificial actuatoren_US
dc.subjectElectroencephalographic (EEG)en_US
dc.subjectElbow movementen_US
dc.titleElbow movement detection using brain computer interfaceen_US
dc.typeWorking Paperen_US
dc.contributor.urlfaridghani@unimap.edu.myen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record