Show simple item record

dc.contributor.authorHema, Chengalvarayan Radhakrishnamurthy
dc.contributor.authorPaulraj, Murugesa Pandiyan, Assoc. Prof. Dr.
dc.contributor.authorAbdul Hamid, Adom, Prof. Dr.
dc.date.accessioned2013-07-23T14:57:22Z
dc.date.available2013-07-23T14:57:22Z
dc.date.issued2012
dc.identifier.citationp. 615-620en_US
dc.identifier.isbn978-146731666-8
dc.identifier.urihttp://dspace.unimap.edu.my/123456789/27029
dc.descriptionLink to publisher's homepage at http://ieeexplore.ieee.org/en_US
dc.description.abstractNeural network classifiers are one among the popular modes in the design of classifiers for electroencephalograph based brain machine interfaces. This study presents algorithms to improve the classification performance of motor imagery for a four state brain machine interface. Dynamic neural network models with band power and Parseval energy density features are proposed to improve the classification of task signals. Motor imagery signals recorded noninvasively at the sensorimotor cortex region using two bipolar electrodes are used in the study. The performances of the proposed algorithms are compared with a static neural classifier. Average classification performance of 97.7% was achievable. Experiment results show that the distributed time delay neural network model out performs the layered recurrent and feed forward neural classifiersen_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.ispartofseriesProceedings of the 2nd IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES) 2012en_US
dc.subjectBand poweren_US
dc.subjectBrain machine interfacesen_US
dc.subjectDynamic neural networksen_US
dc.subjectNeural networksen_US
dc.subjectParseval theoremen_US
dc.titleImproving classification of EEG signals for a four-state brain machine interfaceen_US
dc.typeWorking Paperen_US
dc.contributor.urlhemacr@karpagam.ac.inen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record