Show simple item record

dc.contributor.authorMuhammad Khusairi, Osman
dc.contributor.authorMohd Yusoff, Mashor, Prof. Dr.
dc.contributor.authorHasnan, Jaafar, Prof.
dc.date.accessioned2014-01-02T04:01:00Z
dc.date.available2014-01-02T04:01:00Z
dc.date.issued2012-04
dc.identifier.citationElektronika ir Elektrotechnika, vol. 120(4), 2012, pages 69-74en_US
dc.identifier.issn1392-1215 (P}
dc.identifier.issn2029-5731 (O)
dc.identifier.urihttp://www.eejournal.ktu.lt/index.php/elt/article/view/1456
dc.identifier.urihttp://dspace.unimap.edu.my/123456789/30945
dc.descriptionLink to publisher's homepage at http://ktu.lt/en_US
dc.description.abstractThis paper proposes an automated detection of tuberculosis bacilli in Ziehl-Neelsen-stained tissue slides using image processing and neural network. Image segmentation using CY-based colour filter and k-mean clustering procedure is used to separate objects of interest from the background. A number of geometrical features are then extracted from the segmented images. A recent training algorithm called Extreme Learning Machine (ELM) is modified to train a hybrid multilayered perceptron network (HMLP) for the classification task. The results indicate that the performance of HMLP-ELM network is comparable to the previously proposed methods and offers a fast training time with no designing parameter required. Ill. 6, bibl. 15, tabl. 1 (in English; abstracts in English and Lithuanian).en_US
dc.language.isoenen_US
dc.publisherKauno Technologijos Universitetasen_US
dc.subjectTuberculosis bacillien_US
dc.subjectHybrid multilayered perceptron network (HMLP)en_US
dc.subjectTissue slides imageen_US
dc.subjectExtreme Learning Machine (ELM)en_US
dc.titleDetection of tuberculosis bacilli in tissue slide images using HMLP network trained by Extreme Learning Machineen_US
dc.typeArticleen_US
dc.contributor.urlkhusairi@ppinang.uitm.edu.myen_US
dc.contributor.urlyusoff@unimap.edu.myen_US
dc.contributor.urlhasnan@kb.usm.myen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record