Show simple item record

dc.contributor.authorChong, Yen Fook
dc.contributor.authorHariharan, Muthusamy, Dr.
dc.contributor.authorLim, Sin Chee
dc.contributor.authorSazali, Yaacob, Prof. Dr.
dc.contributor.authorAbdul Hamid, Adom, Prof. Dr.
dc.date.accessioned2014-03-25T01:40:30Z
dc.date.available2014-03-25T01:40:30Z
dc.date.issued2013-12
dc.identifier.citationTurkish Journal of Electrical Engineering and Computer Sciences, vol. 21(SUPPL. 1), 2013, pages 1983-1994en_US
dc.identifier.issn1300-0632
dc.identifier.urihttp://mistug.tubitak.gov.tr/bdyim/toc.php?dergi=elk&yilsayi=2013/Sup.1
dc.identifier.urihttp://dspace.unimap.edu.my:80/dspace/handle/123456789/33096
dc.descriptionLink to publisher's homepage at http://www.tubitak.gov.tr/en_US
dc.description.abstractStuttering assessment through the manual classification of speech disfluencies is subjective, inconsistent, time-consuming, and prone to error. The aim of this paper is to compare the effectiveness of the 3 speech feature extraction methods, mel-frequency cepstral coefficients, linear predictive coding (LPC)-based cepstral parameters, and perceptual linear predictive (PLP) analysis, for classifying 2 types of speech disfluencies, repetition and prolongation, from recorded disfluent speech samples. Three different classifiers, the k-nearest neighbor classifier, linear discriminant analysis-based classifier, and support vector machine, are employed for the classification of speech disfluencies. Speech samples are taken from the University College London Archive of Stuttered Speech and stuttered events are identified through manual segmentation. A 10-fold cross-validation method is used for testing the reliability of the classifier results. The effect of the 2 parameters (LPC order and frame length) in the LPC- and PLP-based methods on the classification results is also investigated. The experimental results reveal that the proposed method can be used to help speech language pathologists in classifying speech disfluencies.en_US
dc.language.isoenen_US
dc.publisherScientific and Technical Research Council of Turkeyen_US
dc.subjectDisfluent speechen_US
dc.subjectLinear predictive codingen_US
dc.subjectMel-frequency cepstral coefficienten_US
dc.subjectPerceptual linear predictive analysisen_US
dc.subjectSupport vector machineen_US
dc.titleComparison of speech parameterization techniques for the classification of speech disfluenciesen_US
dc.typeArticleen_US
dc.contributor.urlfook1987@gmail.comen_US
dc.contributor.urlhari@unimap.edu.myen_US
dc.contributor.urlsclim3@gmail.comen_US
dc.contributor.urls.yaacob@unimap.edu.myen_US
dc.contributor.urlabdhamid@unimap.edu.myen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record