• Login
    View Item 
    •   DSpace Home
    • Journal Articles
    • School of Mechatronic Engineering (Articles)
    • View Item
    •   DSpace Home
    • Journal Articles
    • School of Mechatronic Engineering (Articles)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Neural network performance comparison in infant pain expression classifications

    Thumbnail
    View/Open
    Neural network performance comparison in infant pain expression classifications.pdf (130.7Kb)
    Date
    2014
    Author
    Muhammad Naufal, Mansor
    Mohd Nazri, Rejab
    Metadata
    Show full item record
    Abstract
    Infant pain is a non-stationary made by infants in response to certain situations. This infant facial expression can be used to identify physical or psychology status of infant. The aim of this work is to compare the performance of features in infant pain classification. Fast Fourier Transform (FFT), and Singular value Decomposition (SVD) features are computed at different classifier. Two different case studies such as normal and pain are performed. Two different types of radial basis artificial neural networks namely, Probabilistic Neural Network (PNN) and General Regression Neural Network (GRNN) are used to classify the infant pain. The results emphasized that the proposed features and classification algorithms can be used to aid the medical professionals for diagnosing pathological status of infant pain.
    URI
    http://dspace.unimap.edu.my:80/dspace/handle/123456789/33463
    Collections
    • School of Mechatronic Engineering (Articles) [319]

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback
     

     

    Browse

    All of UniMAP Library Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback