Show simple item record

dc.contributor.authorNor Azrita, Mohd Amin
dc.contributor.authorMohd Bakri, Adam
dc.contributor.authorNoor Akma, Ibrahim
dc.contributor.authorAhmad Zaharin, Aris
dc.date.accessioned2014-05-23T04:07:29Z
dc.date.available2014-05-23T04:07:29Z
dc.date.issued2013
dc.identifier.citationAIP Conference Proceedings, vol. 1557, 2013, pages 424-428en_US
dc.identifier.isbn978-073541183-8
dc.identifier.issn0094-243X
dc.identifier.urihttp://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4823949
dc.identifier.urihttp://dspace.unimap.edu.my:80/dspace/handle/123456789/34672
dc.descriptionLink to publisher's homepage at http://scitation.aip.org/en_US
dc.description.abstractThe aim of this paper is to model the non-stationary Generalized Extreme Value distribution with a focus on Bayesian approach. The location parameter is expressed in terms of linear trend over the time period while constant for both scale and shape parameters. This study also explores the informative and Jeffrey's prior towards the efficiency of the estimating procedure. Root Mean Square Error is then use for choosing the best prior. Metropolis Hasting for extreme algorithm will also briefly explained in this study. The model is applied to the air quality data for Johor state.en_US
dc.language.isoenen_US
dc.publisherAIP Publishing LLCen_US
dc.subjectAir-pollutionen_US
dc.subjectBayesian analysisen_US
dc.subjectGeneralized Extreme Value distributionen_US
dc.subjectMetropolis-Hastings algorithmen_US
dc.subjectNon-stationaryen_US
dc.titleBayesian extreme modeling for non-stationary air quality dataen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record