Show simple item record

dc.contributor.authorAlgahtani, Fahid
dc.contributor.authorThulasiram, Karthikram B.
dc.contributor.authorNashrul Fazli, Mohd Nasir, Dr.
dc.contributor.authorHolland, Anthony Stephen
dc.date.accessioned2014-05-24T17:48:46Z
dc.date.available2014-05-24T17:48:46Z
dc.date.issued2013-12-09
dc.identifier.citationProceedings of SPIE -The International Society for Optical Engineering (SPIE), vol. 8923, 2013, pages 1-6en_US
dc.identifier.isbn978-081949814-4
dc.identifier.issn0277-786X
dc.identifier.urihttp://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1809880
dc.identifier.urihttp://dspace.unimap.edu.my:80/dspace/handle/123456789/34701
dc.descriptionLink to publisher's homepage at http://spiedigitallibrary.org/en_US
dc.description.abstractThe four-point probe technique is well known for its use in determining sheet resistance and resistivity (or effective resistivity) of thin films. Using a standard four-point probe setup, relatively large area samples are required. The convention is that the distance from any probe in the probe arrangement should be at least ten times the probe spacing from the sample boundary in order to use the fixed correction factor. In this paper we show, using computer modelling, how accurate measurements can be made using appropriate correction factors for samples that are either small or of any thickness. For the significant extent of variations used, the correction factor does not vary significantly.en_US
dc.language.isoenen_US
dc.publisherThe International Society for Optical Engineering (SPIE)en_US
dc.subjectResistivityen_US
dc.subjectSheet resistanceen_US
dc.subjectTest structureen_US
dc.titleFour point probe geometry modified correction factor for determining resistivityen_US
dc.typeArticleen_US
dc.identifier.urlhttp://dx.doi.org/10.1117/12.2034057
dc.contributor.urls3276519@student.rmit.edu.auen_US
dc.contributor.urlnashrul@unimap.edu.myen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record