• Login
    View Item 
    •   DSpace Home
    • Researchers
    • Mohd Yusoff Mashor, Prof. Dr.
    • View Item
    •   DSpace Home
    • Researchers
    • Mohd Yusoff Mashor, Prof. Dr.
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An Automated Intelligent Identification and Counting System Procedure for Tuberculosis

    Thumbnail
    View/Open
    Main article (1.024Mb)
    Date
    2019
    Author
    Fatin Atiqah, Rosli
    Mohd Yusoff, Mashor
    Siti Suraya, Md Noor
    Metadata
    Show full item record
    Abstract
    Tuberculosis (TB) is an infectious disease caused by Mycobacterium Tuberculosis or TB Bacilli. Currently, the classification of TB bacilli is carried out by microbiologist by using Ziehl-Nielsen (ZN) stained smear sputum slide under a light microscopy. However, the manual evaluation is time-consuming and lead to slow decision. Furthermore, the sensitivity is less due to incline of human error which lead to inaccurate conclusion. Therefore, this study proposes an intelligence identification and counting system to detect the presence of TB bacilli in the ZN-stained smear sputum image. This system is designed to identify the presence of TB bacilli and count the number of TB bacilli by applying digital image processing and artificial intelligence techniques. In image acquisition, there are 70 samples images of ZN-stained smear sputum image were collected from Hospital Universiti Sains Malaysia (HUSM) Kubang Kerian, Kota Bharu, Kelantan, Malaysia. The image processing technique consists of contrast enhancement, segmentation, and feature extraction. The contrast of original image was enhanced by the combination of global enhancement, local enhancement and Contrast Limited Adaptive Histogram Equalization (CLAHE). Then, the enhanced image was segmented using color thresholding and the features were extracted consists of on 18 colour features, 15 shape features and 5 texture features. Afterward, the features underwent feature selection to select the relevant features by using Neighborhood Component Analysis (NCA) and ReliefF Analysis. The study showed that there are relevant features were chosen by ReliefF at feature weight more than 0.004 including (8 colour features, 11 shape feature and 3 texture features) for improving the performance and accuracy of Multilayer Perceptron (MLP) trained by Scaled Conjugate Gradient (SCG). For classification process, MLP, k-Nearest Neighborhood (k-NN) and Support Vector Machine (SVM) are used with 6 folds cross-validation. It was found that MLP has the highest of accuracy, sensitivity and specificity with 93.8%, 93.4% and 94.1% respectively.
    URI
    http://dspace.unimap.edu.my:80/xmlui/handle/123456789/69010
    Collections
    • Mohd Yusoff Mashor, Prof. Dr. [85]

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback
     

     

    Browse

    All of UniMAP Library Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback