• Login
    View Item 
    •   DSpace Home
    • Journal Articles
    • International Journal of Nanoelectronics and Materials (IJNeaM)
    • View Item
    •   DSpace Home
    • Journal Articles
    • International Journal of Nanoelectronics and Materials (IJNeaM)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Simulation study on structure bumper beam using finite element analysis

    Thumbnail
    View/Open
    Main article (1.382Mb)
    Date
    2022-03
    Author
    Hambali, A.
    Kasim, M. S.
    Husshini, N. H. N.
    Muhammad Nasiruddin, S.
    MAM Nawi
    Rosidah, J.
    Mohamed, S. B.
    Ito, Teruaki
    Metadata
    Show full item record
    Abstract
    One of the main parts of the automotive bumper system is the bumper beam. A bumper beam is a safety feature of a car where it functions to absorb impact energy during a collision. It is important to improve the bumper beam design to improve vehicle safety. The objective of the paper is to investigate the most suitable bumper beam cross-section at the conceptual design stage using finite element analysis (FEA). There are five (5) conceptual designs with different types of cross-sections that have been proposed to evaluate its energy absorption analysis through ANSYS LS DYNA software. The indicators considered in evaluating and determining the best design are energy absorption, specific energy absorption (SEA) and deformation of the bumper beam after crashed. For the selection process, six bumper beam structures have been considered. Analytical hierarchy process and Technique for Order of Preference by Similarity to Ideal Solution (AHP-TOPSIS) method was employed to determine the best design through identified product design specification (PDS) of frontal low-speed impact low carbon steel bumper beam. Through the seven elements identified in product design specification (PDS) using the AHP-TOPSIS method, conceptual design 4 (CD-4) bumper beam was the best bumper beam design with a Relative closeness coefficient (Ci) value of 0.564.
    URI
    http://dspace.unimap.edu.my:80/xmlui/handle/123456789/75994
    Collections
    • International Journal of Nanoelectronics and Materials (IJNeaM) [336]

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback
     

     

    Browse

    All of UniMAP Library Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback