• Login
    View Item 
    •   DSpace Home
    • Professional Associations
    • IEM Journal
    • View Item
    •   DSpace Home
    • Professional Associations
    • IEM Journal
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Forecasting Facebook user engagement using hybrid prophet LSTM and iForest

    Thumbnail
    View/Open
    Main article (816.2Kb)
    Date
    2022
    Author
    Kong, Yih Hern
    Lim, Khai Yin
    Chin, Wan Yoke
    Metadata
    Show full item record
    Abstract
    Business forecasting remains a popular topic these days. A reliable business forecast often plays a vital role in an advertising campaign. The amount of attention acquired by posting an advertisement is one of the most essential criteria to determine the effectiveness of the advertisement. The number of times that public users engage with a content signifies the amount of attention received, which was measured by user engagement. With a good forecast, the advertisement could be promoted to a larger number of people. Facebook, as the most popular social media site, is preferred by the majority of advertisers. Therefore, this study addresses Facebook user engagement by forecasting the optimum date to post an advertisement. Different forecasting models, each with its own strengths and weaknesses, are used to model time series data with various properties. The objective of this study is threefold: to investigate the accuracy of the proposed Hybrid Prophet-LSTM that combines Long Short-Term Memory (LSTM) and FBProphet (Prophet), to study the holiday impact on user engagement forecasting on Facebook brand pages, and to study the effect of implementing Isolation Forest (iForest) on the dataset and its contribution to the forecast result. Data from three popular brand pages were used in the experiments in the period of June 2018 to March 2021. The results show that the proposed hybrid model outperforms both the standalone LSTM and Prophet across the datasets. Besides, it is found that holiday effect could generally increase forecast accuracy. In general, datasets pre-processed using iForest can reduce the forecast error under specific conditions. Therefore, the optimum date for an advertisement campaign can be determined on the basis of the most anticipated user engagement, which consequently enhances the business income.
    URI
    http://dspace.unimap.edu.my:80/xmlui/handle/123456789/80157
    Collections
    • IEM Journal [310]

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback
     

     

    Browse

    All of UniMAP Library Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback