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Abstract

Fuzzy set provides a powerful technique to introduce uncertainty into
numerical methods. However, the computations of fuzzy sets often face
difficult problems. This is due to non-applicability of common existing
methods, severe overestimation in computation, or very high compu-
tational complexity. This paper proposes a new strategy to introduce
uncertainty into Euler’s method. It consists of two parts. First, we pro-
pose a new fuzzy version of Euler’s method, which takes into account the
dependency problem that arises in the classical Euler’s method. Second,
we perform optimisation technique to approximate the solution of dif-
ferential equations with fuzzy initial values. This combination turns out
to be a great tool to tackle uncertainty in any numerical method. One
example is provided to show the capability of our proposed methods
compared to the conventional fuzzy version of Euler’s method proposed
in the literature.
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1 Introduction

In modelling real physical phenomena, differential equations play a significant
role in science and engineering. They often represent an idealisation of the
real physical phenomena involved. The real physical phenomena, however, are
pervaded with uncertainty. The uncertainty can arise in the experimental part,
the data collection, the measurement process, as well as when determining the
initial values. These are patently obvious when dealing with “living” materi-
als, such as soil, water, microbial populations, etc. Various theories exist for
describing this uncertainty and the most popular one being fuzzy set theory
[1].

When a real physical phenomenon is transform into a deterministic initial value
problem, namely

x′(t) = f(t, x(t)), x(t0) = x0, (1)

we cannot usually be sure that the model is perfect. For example, the ini-
tial value in (1) may not be known exactly. If this is the case, then it would
be natural to study differential equations with fuzzy initial values. For the
initiation of this aspect, the necessary calculus has been investigated (see
[2, 3, 4, 5, 6, 7, 8, 9, 10]).

In general, the differential equations with fuzzy initial values do not always
have solutions which we can obtain using analytical methods. In fact, many of
real physical phenomena encountered, are almost impossible to solve by this
technique. Due to this, some authors have proposed numerical methods to ap-
proximate the solutions of differential equations with fuzzy initial values. One
of the earlier contributions was the fuzzy Euler’s method proposed by Ma et
al. [11]. In [12], the authors have implemented this method to explore hybrid
fuzzy systems. Unfortunately, the proposed method only works in practice
for some differential equations with fuzzy initial values and the computational
aspects are trivial.

Moreover, the authors do not take into account the dependency problem that
exists in fuzzy setting. This is frequently the case in fuzzy computations. In
[13], the authors have developed the 4-th order Runge-Kutta method for solv-
ing differential equations with fuzzy initial values. However, their works share
the same problems as in [11]. We can see the same problems in another papers
written by Khastan and Ivaz [14], Palligkinis et al. [15], Pederson and Sam-
bandham [16], Abbasbandy and Allahviranloo [17] and Duraisamy and Usha
[18]. By taking into account the dependency problem and the computational
approach proposed by Ahmad et al. [19], we develop a new fuzzy version of
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Euler’s method for a more general class of problems.

This paper is organised as follows: in Section 2, we recall some basic defini-
tions and theoretical background we need throughout this paper. The theory
of differential equations with fuzzy initial values is presented in Section 3. In
Section 4, we propose a new fuzzy version of Euler’s method for solving dif-
ferential equations with fuzzy initial values. In Section 5, we give a numerical
example to approximate the solution of non-linear differential equation with
fuzzy initial value. We conclude with an overview of the benefits of the pro-
posed method in Section 6.

2 Preliminaries

In this section, the basic idea of fuzzy sets will be introduced and some impor-
tant concepts will be explained.

2.1 Fuzzy sets

The notion of a fuzzy set is an extension of that of a classical or crisp set. Let X
be a set of objects, called the universe, whose generic elements are denoted by
x. Membership in a subset A of X can be viewed as a characteristic function,
or membership function A : X → {0, 1} such that

A(x) =

{
1 , if x ∈ A ,

0 , if x /∈ A .
(2)

The set {0, 1} is called the valuation set. If the valuation set is allowed to be
the real unit interval [0, 1], then A is called a fuzzy subset of X or simply a
fuzzy set in X. In this case, A(x) is interpreted as the degree of membership
of the element x in the fuzzy set A.

Definition 1 Let A be a fuzzy set defined on R. The support of A is a crisp
set of all points on R such that the membership degree of A is non-zero, that
is

supp(A) = {x ∈ R | A(x) > 0} .

Definition 2 Let A be a fuzzy set defined on R. The core of A is the crisp
set of all points on R such that the membership degree of A is 1, that is

core(A) = {x ∈ R | A(x) = 1} .

Definition 3 Let A be a fuzzy set on R. A is called a fuzzy interval if:
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(i) A is normal: there exists x0 ∈ R such that A(x0) = 1;

(ii) A is convex: for all x, y ∈ R and 0 ≤ λ ≤ 1, it holds that

A(λx + (1 − λ)y) ≥ min (A(x), A(y)) ;

(iii) A is upper semi-continuous: for any x0 ∈ R, it holds that

A(x0) ≥ lim
x→x±

0

A(x);

(iv) [A]0 = {x ∈ R | A(x) > 0} is a compact subset of R.

The α-cut of a fuzzy interval A, with 0 < α ≤ 1 is the crisp set

[A]α = {x ∈ R | A(x) ≥ α} .

For a fuzzy interval A, its α-cuts are closed intervals in R; we denote them by

[A]α = [aα
1 , aα

2 ] .

Definition 4 A fuzzy interval A is called a triangular fuzzy interval if its
membership function has the following form:

A(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 , if x < a ,
x−a
b−a

, if a ≤ x ≤ b ,
c−x
c−b

, if b ≤ x ≤ c ,

0 , if x > c ,

and its α-cuts are simply [A]α = [a + α(b − a), c − α(c − b)], α ∈ (0, 1].

In this paper, the set of all fuzzy intervals is denoted by F(R).

2.2 The extension principle

Any crisp function can be extended to take fuzzy set as arguments by applying
Zadeh’s extension principle [1]. Let f be a function from X to Y . Given a
fuzzy set A in X, we want to find a fuzzy set B = f(A) in Y that is induced
by f . If f is a strictly monotone function then we can extend f to fuzzy set
as follow:

f(A)(y) =

{
A (f−1(y)) , if y ∈ range(f) ,

0 , if y /∈ range(f) .
(3)
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It is clear that (3) can be easily calculated by determining the membership at
the end points of the α-cuts of A. However, in general, the process of finding
the fuzzy set B = f(A) is more complicated and cannot be gathered easily.
For example, if f is a non-monotone function, then the problem can arise when
two or more distinct points in X are mapped to the same point in Y . If this is
the case, then the above equation may take two or more different values. This
requires a new extension of (3) as shown below:

f(A)(y) =

⎧⎨⎩ sup
x∈f−1(y)

A(x) , if y ∈ range(f) ,

0 , if y /∈ range(f) ,
(4)

where

f−1({y}) = {x ∈ X | f(x) = {y}} .

The equation (4) is called Zadeh’s extension principle [1].

In [20], the authors have shown that if f : X → Y is a continuous function,
then f : F(X) → F(Y ) is a well-defined function, and

[f(A)]α = f([Aα]),

for all α ∈ [0, 1] and A ∈ F(X).

3 Fuzzy Initial Value Problems

In this section, we first consider the following ordinary differential equation:{
x′(t) = f(t, x(t)), t ∈ [t0, T ]

x(t0) = x0 ,
(5)

where f : [t0, T ]×R → R is a continuous function defined on [t0, T ] with T > 0
and x0 ∈ R. Suppose that the initial condition in (5) is uncertain and modelled
by a fuzzy interval, then we have the following fuzzy initial value problem [10]:{

x′(t) = f(t, x(t)), t ∈ [t0, T ]

x(t0) = X0 ,
(6)

where f : [t0, T ]×F(R) → F(R) is continuous function defined on [t0, T ] with
T > 0 and X0 ∈ F(R) with α-cuts denoted by [X0]

α = [xα
0,1, x

α
0,2] for α ∈ (0, 1].

If X is a fuzzy interval, then from Zadeh’s extension principle [1] we have

f(t, X)(z) =

⎧⎨⎩ sup
z=f(t,s)

X(s), if z ∈ range(f) ,

0, if z /∈ range(f) .
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It follows that

[f(t, X)]α = [min {f(t, u) | u ∈ [xα
1 , xα

2 ]} ,

max {f(t, u) | u ∈ [xα
1 , xα

2 ]}].

This leads to the following lemma:

Lemma 1 [21] Let f : [t0, T ] × R → R be a continuous function defined on
[t0, T ] with T > 0. If X is a fuzzy interval defined on R, then we have

[f(t, X)]α = f(t, [X]α) ,

for all α ∈ [0, 1].

Let X : [t0, T ] → F(R) be a fuzzy process which derivative defined by [10]

[X ′(t)]α = [xα′
1 (t), xα′

2 (t)], α ∈ (0, 1].

If the derivative of the fuzzy process exists and satisfies the following condi-
tions:

xα′
1 (t) = min {f(t, u) | u ∈ [xα

1 , xα
2 ]} , xα

1 (t0) = xα
0,1

xα′
2 (t) = max {f(t, u) | u ∈ [xα

1 , xα
2 ]} , xα

2 (t0) = xα
0,2

then, the fuzzy process is the solution of (6) on t ∈ [t0, T ] with T > 0 and
α ∈ (0, 1]. If we solve (6) analytically, then we have to verify that the interval
[X(t)]α = [xα

1 (t), xα
2 (t)] satisfies the following theorem:

Theorem 1 [22] If X : [t0, T ] → F(R) is a fuzzy solution, then

(i) [X(t)]α is nonempty compact subset of R;

(ii) [X(t)]α2 ⊆ [X(t)]α1 for 0 ≤ α1 ≤ α2 ≤ 1; and

(iii) [X(t)]α =
⋂∞

n=1[X(t)]αn for any nondecreasing sequence αn → α in [0, 1].

4 The Proposed Method

In [11], the authors have proposed a fuzzy version of Euler’s method to approx-
imate the solution of differential equations with fuzzy initial values. However,
the authors do not take into account the dependency problem when adding of
two fuzzy intervals. This leads to overestimation in computation.
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First, we recall the classical Euler’s method

xi+1 = xi + hf(ti, xi), i = 0, 1, 2, ..., N − 1 . (7)

Let us remark about dependency problem appears in (7). Since the arguments
xi are dependent, then we have to define the right hand side of (7) as a new
function. We denote it by Φh(ti, xi) = xi + hf(ti, xi). Hence, the right hand
side of (7) turns to

xi+1 = Φh(ti, xi), i = 0, 1, 2, ..., N − 1 , (8)

where Φh : [t0, T ] × R → R is a continuous function defined on [t0, T ] with
T > 0. By applying Zadeh’s extension principle to (8), then we have the
following new fuzzy version of Euler’s method:

Xi+1 = Φh(ti, Xi) , (9)

where Φh : [t0, T ]×F(R) → F(R). The membership function of Φh(ti, Xi) can
be defined as follow:

Φh(ti, Xi)(zi) =

⎧⎨⎩ sup
zi=Φh(ti,si)

Xi(si), if zi ∈ range(Φh) ,

0, if zi /∈ range(Φh) .

It follows that

[Φh(ti, Xi)]
α = [min

{
Φh(ti, u)|u ∈ [xα

1,i(t), x
α
2,i(t)]

}
,

max
{
Φh(ti, u)|u ∈ [xα

1,i(t), x
α
2,i(t)]

}
] .

If [Xi+1]
α = [xα

1,i+1, x
α
2,i+1], then we can express (9) in terms of α-cuts as follows:

xα
1,i+1 = min

{
Φh(ti, u)|u ∈ [xα

1,i(t), x
α
2,i(t)]

}
, (10)

xα
2,i+1 = max

{
Φh(ti, u)|u ∈ [xα

1,i(t), x
α
2,i(t)]

}
. (11)

Our purpose here is to generate accurate approximations at each α-cut. We
begin by making a partition of the form t0 < t1 < t2 < ... < tN−1 < tN = T
on the interval [t0, T ]. This partition is uniformly spaced, that is the partition
points are ti = t0 + ih, i = 0, 1, 2, ..., N and the partition spacing h = T−t0

N
> 0

is sufficiently small and we called it the step-size or step-length.

In this study, the computations of (10) and (11) will be performed by using the
method proposed by Ahmad et al. [19]. The method is based on optimisation
technique. One of the reasons of using this method is that it requires only few
function evaluations at each partition point.
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5 Numerical Example

In this section, we present a numerical example to show the capability of our
proposed method compared to the conventional fuzzy version of Euler’s method
proposed in [11].

Consider the following non-linear differential equation with fuzzy initial value:{
x′(t) = t cos(x), t ∈ [0, 3]

x(0) = (πα
2

, π − πα
2

) .
(12)

Since the exact solution cannot be found analytically, we need a numerical
method to approximate the solution of (12). First, we divide the interval [0, 3]
into 20 uniformly spaced subintervals and proceed with the numerical method
proposed in Section 4. The final results are shown in Fig. 1.
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Figure 1: The approximation solution obtained by using the method proposed
in this paper.

From the graph, we can see that the approximation solution has decreasing
length of its support as t increases. In contrast, applying the numerical method
proposed in [11], the approximation solution has increasing length of its sup-
port (see Fig. 2). This behaviour can be interpreted as the approximation
solution becomes fuzzier and fuzzier as t increases. Hence, the approximation
solution behaves quite differently from the crisp solution i.e. at several initial
values.

As showed in Figs. 1 and 2, the differential equation has two contradict solu-
tions. Fig. 1 shows converge fuzzy solution which resulted from our proposed
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Figure 2: The approximation solution obtained by using the method proposed
in [11].

method. While Fig. 2 shows diverge fuzzy solution which resulted from the
numerical method proposed in [11]. Which approximation solution satisfies
the differential equation? The only way to check this is by sketching a di-
rection field, a way of predicting the qualitative behaviour of the solution of
differential equation. The direction field represents the slope of approximation
solution in the tx-plane. It is represented by the collection of narrow lines.
From the practical point of view, if the approximation solution follows the di-
rection field, then the approximation solution is the solution to the differential
equation.

From the numerical results, we plot the direction field of (12). It is repre-
sented by narrow lines as showed in Fig. 3. If we look at the figure, the slope
of the approximation solution obtained by our proposed method follows the
direction field. This is enough to prove that our proposed method produced
better solution. In contrary, the approximation solution obtained by using the
method proposed in [11] does not follow the direction field. Moreover, it has
overestimation in computation as t increases. This is always the case when we
consider the same variable as independent in fuzzy interval computations (see
Eq. (7)).

To quantify the effect of overestimation, we calculate the local degree of over-
estimation at a specific level of αj according to the following equation:

Ψ̂
αj

i =
W[Φ̂h(ti, X

αj

i )] − W[Φh(ti, X
αj

i )]

W[Φh(ti, X
αj

i )]
, (13)
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Figure 3: The narrow lines show the direction field of x′(t) = t cos(x). The
solid curves denote the approximation solution of x′(t) = t cos(x) with x(0) =
(πα

2
, π− πα

2
) at α = 0, 0.5, 1 generated by the new fuzzy Euler’s method, using

a step size of h = 0.15.

where W[Φ̂h(ti, X
αj

i )] is the width of approximation solution obtained in [11]
at ti with αj ∈ [0, 1) and W[Φh(ti, X

αj

i )] is the width of approximation solution
obtained by our proposed method at ti with αj ∈ [0, 1). The width, W of an
interval is defined as follow:

W([a, b]) = b − a . (14)

The local degrees of overestimation at t = 1.05 for each α level are given in
Table 1.

Table 1: Local degree of overestimation at t = 1.05

α Φ̂h(t1.05, X
α
1.05) Φh(t1.05, X

α
1.05) Ψ̂α

i (%)
0 [-0.4725, 3.6141] [0.4613, 2.6803] 84.16

0.1 [-0.3144, 3.4560] [0.6000, 2.5416] 94.19
0.2 [-0.1512, 3.2928] [0.7296, 2.4120] 104.71
0.3 [0.0223, 3.1193] [0.8511, 2.2905] 115.16
0.4 [0.2090, 2.9326] [0.9659, 2.1757] 125.13
0.5 [0.4092, 2.7324] [1.0750, 2.0666] 134.29
0.6 [0.6224, 2.5192] [1.1794, 1.9621] 142.34
0.7 [0.8476, 2.2940] [1.2803, 1.8612] 148.99
0.8 [1.0826, 2.0590] [1.3786, 1.7630] 154.01
0.9 [1.3249, 1.8167] [1.4751, 1.6665] 156.95
1.0 [1.5708, 1.5708] [1.5708, 1.5708] 0
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6 Conclusion

We have presented a new fuzzy version of Euler’s method for the numerical
solution of differential equations with fuzzy initial values. The method we
have presented has two advantages: (1) the dependency problem which arises
in the classical Euler’s method is studied and handled effectively; and (2) the
behaviour of the approximation solution is identical with the solution of dif-
ferential equations with several crisp initial values.
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