

Embedded Operating System Optimization
for Face Recognition System

by

Shuhaizar Bin Daud

A thesis submitted
In fulfilment of the requirements for the degree of

Master of Science (Computer Engineering)

School of Computer & Communication Engineering
Universiti Malaysia Perlis

2010

©
 T
hi
s i
te
m
 is
 p
ro
te
ct
ed
 b
y
or
ig
in
al
 c
op
yr
ig
ht

©
 T
hi
s i
te
m
 is
 p
ro
te
ct
ed
 b
y
or
ig
in
al
 c
op
yr
ig
ht

i

ACKNOWLEDGEMENT

 I would like to extend my highest gratitude to my supervisor Assoc. Prof. Dr.

R. Badlishah Ahmad for all his guidance over the years I spent in this research. I

would also like to thank my co-supervisor Assoc. Prof. Dr. Rizon Muhamed Juhari

for his support and help. I am thankful to all the researchers & friends in Embedded

Computing Cluster that in more than one way helped me pull it off together. I would

also like to thank my family and my wife and child for their kind support, patience

and encouragement throughout these years.

 The time I’ve spent on this research has been a great opportunity for me to

learn and apply the knowledge I have acquired during my studies. I am also indebted

to all the lecturers and staffs of the School of Computer Engineering and

Communications for their help and friendship.

THANK YOU!

©
 T
hi
s i
te
m
 is
 p
ro
te
ct
ed
 b
y
or
ig
in
al
 c
op
yr
ig
ht

ii

TABLE OF CONTENTS

 Page

Table of contents ... ii

List of table ... vii

List of figures ... viii

Abstrak ... xi

Abstract ... xii

CHAPTER 1 INTRODUCTION ... 1

1.1 Problem Statement... 2

1.2 Project Aim .. 4

1.3 Project Motivation ... 4

1.4 Project Objectives .. 5

1.5 Project Scope ... 5

1.6 Thesis Outline .. 6

CHAPTER 2 LITERATURE REVIEW .. 8

2.1 Introduction ... 8

2.2 Linux ... 8

2.2.1 The Linux Kernel ... 9

 A. Linux 2.4 Kernel .. 11

 B. Linux 2.6 Kernel .. 11

 C. Comparison of the 2.4 Kernel and 2.6 Kernel ... 13

©
 T
hi
s i
te
m
 is
 p
ro
te
ct
ed
 b
y
or
ig
in
al
 c
op
yr
ig
ht

iii

2.3 Linux GNU C Compiler Collection (GCC) .. 18

2.4 Embedded System ... 19

2.4.1 Single Board Computers .. 20

 A. Advantech PCM-9375 SBC ... 20

 B. Technologic Systems TS-5500 SBC ... 22

2.4.2 Embedded Operating System ... 23

2.4.3 Embedded Linux .. 24

2.4.4 Embedded Linux Booting Sequence .. 25

2.4.5 Examples of Embedded Linux Operating System 28

 A. BlueCat Embedded Linux .. 29

 B. PeeWeeLinux ... 30

 C. Technologic Systems TS-Linux .. 31

2.5 Face Recognition System .. 31

2.5.1 Face Recognition Through Iris Detection .. 34

 A. Face Database Modeling .. 35

 B. Face Detection Stages .. 36

2.5.2 Histogram Equalization .. 40

CHAPTER 3 METHODOLOGY ... 42

3.1 Introduction ... 42

3.2 Available Development Paths ... 43

3.3 Host System and Target Development Setup .. 45

3.4 Host System Setup ... 48

3.5 Linux Main System Toolchain .. 51

3.6 Linux GNU Compiler Collection (GCC) .. 52

©
 T
hi
s i
te
m
 is
 p
ro
te
ct
ed
 b
y
or
ig
in
al
 c
op
yr
ig
ht

iv

3.6.1 GCC Compiler Optimization ... 53

3.6.2 GCC General Optimization Flags .. 54

 A. 1st Level Optimization ... 57

 B. 2nd Level Optimization .. 60

 C. Code Size Optimization (Level 2.5) .. 61

 D. 3rd Level Optimization .. 62

3.6.3 GCC Architectural Optimization Flags .. 63

3.7 Bootstrapped Compilation Process.. 65

3.8 Development Directory Setup ... 68

3.9 Prototyping & Evolution Development ... 70

3.10 Prototype and Disk Image Storage .. 72

CHAPTER 4 DESIGN, TESTING & VALIDATION .. 73

4.1 Introduction ... 73

4.2 Target Operating System Design... 74

4.2.1 System Components Selection ... 74

4.2.2 Kernel Configuration and Selection ... 76

4.2.3 Bootloader Selection & Setup .. 78

4.2.4 Filesystem .. 80

4.2.5 Root Filesystem Structure .. 83

4.3 Hardware Testing Platform ... 85

4.4 Performance Evaluation .. 86

4.5 Power Measurement Platform ... 89

4.6 Memory Usage .. 91

©
 T
hi
s i
te
m
 is
 p
ro
te
ct
ed
 b
y
or
ig
in
al
 c
op
yr
ig
ht

v

CHAPTER 5 RESULT & DISCUSSION .. 93

5.1 Introduction ... 93

5.2 Developed Prototypes .. 93

5.3 Software Based Test Results ... 96

5.3.1 Booting Performance ... 96

5.3.2 Code Execution Performance ... 98

 A. Binary compiled with no compiler optimization (Level 0) 99

 B. Binary compiled with 1st level compiler optimization........................... 100

 C. Binary compiled with 2nd level compiler optimization 101

 D. Binary compiled with 3rd level compiler optimization 102

 E. Summary of Code Execution Performance Test.................................... 103

5.3.3 Binary Efficiency ... 103

5.4 Hardware Based Test Results .. 106

5.4.1 System Memory Footprint ... 107

5.4.2 Power Measurement ... 107

 A. Voltage Drop across Shunt Resistor .. 108

 B. Current Draw ... 111

 C. Power Consumption ... 114

 D. Energy Usage ... 118

CHAPTER 6 CONCLUSION ... 122

6.1 Introduction ... 122

6.2 Future Works ... 123

6.3 Contribution ... 124

©
 T
hi
s i
te
m
 is
 p
ro
te
ct
ed
 b
y
or
ig
in
al
 c
op
yr
ig
ht

vi

REFERENCES ... 125

APPENDICES

Appendix A: Raw data of algorithm execution performance 130

Appendix B: Raw data of power measurement for Prototype 1 134

Appendix C: Raw data of power measurement for Prototype 2 136

Appendix D: Raw data of power measurement for Prototype 3 138

Appendix E: Raw data of power measurement for Prototype 4 140

Appendix F: Published papers & awards received .. 142

©
 T
hi
s i
te
m
 is
 p
ro
te
ct
ed
 b
y
or
ig
in
al
 c
op
yr
ig
ht

vii

LIST OF TABLES

Table No. Page

2.1 Kernel repository for different versions 10

2.2 Available commercial face recognition systems 33

3.1 Development Architecture Test Results 48

3.2 Operating System Evaluation Result 51

3.3 Specific optimization routine invoked by GCC general optimization

flag

57

3.4 First Level Optimization Description 58

3.5 Second Level Optimization Description 60

3.6 Third Level Optimization Description 63

4.1 Linux Bootloader Comparison 79

4.2 Filesystem Characteristics 81

4.3 Root Filesystem Directories According to FHS 84

4.4 Test condition for measurement process 90

5.1 Prototype details 94

5.2 Binary size for test algorithm compiled without optimization 104

5.3 Binary size for test algorithm compiled with 1st level compiler

optimization

104

5.4 Binary size for test algorithm compiled with 2nd level compiler

optimization

104

5.5 Binary size for test algorithm compiled with 3rd level compiler

optimization

105

5.6 System footprint size in idle mode after boot up 107

©
 T
hi
s i
te
m
 is
 p
ro
te
ct
ed
 b
y
or
ig
in
al
 c
op
yr
ig
ht

viii

LIST OF FIGURES

Figure No. Page

2.1 Linux kernel numbering scheme 10

2.2 Average response time for 2.4 and 2.6 kernel under load 15

2.3 System worst case response time between 2.4 and 2.6 kernel under

load

16

2.4 Advantech PCM-9875 Single Board Computer 21

2.5 Linux booting sequence and stages 26

2.6 Extended face template 35

2.7 Coordinate system of the extended face template, TE 36

2.8 Face recognition using iris detection method 37

2.9 Positions of irises detected by the iris detection algorithm 38

3.1 The host and target in a linked development setup 45

3.2 The host and target in a removable development setup 46

3.3 The host/target setup in a standalone development setup 47

3.4 Bootstrapped compilation process 66

3.5 Development host partition setup separating the development partitions

in prototype1 and prototype2 partition

69

3.6 QEMU emulating hardware boot during the prototype testing stage 70

3.7 Boot failure on the test hardware 71

4.1 Default bootloader setup on a normal system 80

4.2 Test platform partition configuration 80

4.3 ext2 filesystem creation using mkfs 82

4.4 ext3 journaling filesystem creation using the mkfs.ext3 command 83

4.5 Root filesystem setup on the prototype following FHS ruling 85

4.6 Picture of the embedded systems test platform 86

4.7 Portion of the histogram equalization testing script 87

4.8 Portion of the measurement result time.txt showing execution

measurement of test algorithms

88

©
 T
hi
s i
te
m
 is
 p
ro
te
ct
ed
 b
y
or
ig
in
al
 c
op
yr
ig
ht

ix

4.9 Portion of the validation file output.txt showing the algorithm

processing results

89

4.10 Circuit diagram for the power measurement platform 90

4.11 Sample output from the top utility 92

4.12 System CPU and memory utilization information from the top utility 92

5.1 Developed prototypes booting time 97

5.2 Developed prototypes booting performance compared to commercial

operating systems

98

5.3 Processing time graph for histogram equalization and face recognition

algorithm

99

5.4 Processing time graph for histogram equalization and face recognition

algorithm compiled with 1st level compiler optimization

100

5.5 Processing time graph for histogram equalization and face recognition

algorithm compiled with 2nd level compiler optimization

101

5.6 Processing time graph for histogram equalization and face recognition

algorithm compiled with 3rd level compiler optimization

102

5.7 Voltage drop across shunt resistor during testing for Prototype 1 109

5.8 Voltage drop across shunt resistor during testing for Prototype 2 109

5.9 Voltage drop across shunt resistor during testing for Prototype 3 110

5.10 Voltage drop across shunt resistor during testing for Prototype 4 110

5.11 Current draw of the system during testing for Prototype 1 111

5.12 Current draw of the system during testing for Prototype 2 112

5.13 Current draw of the system during testing for Prototype 3 112

5.14 Current draw of the system during testing for Prototype 4 113

5.15 Minimum, maximum and average current draw for each prototype

during measurement

114

5.16 Power consumption of the system during testing for Prototype 1 115

5.17 Power consumption of the system during testing for Prototype 2 115

5.18 Power consumption of the system during testing for Prototype 3 116

5.19 Power consumption of the system during testing for Prototype 4 116

5.20 Minimum, maximum and average power consumption for each

prototype during measurement

117

©
 T
hi
s i
te
m
 is
 p
ro
te
ct
ed
 b
y
or
ig
in
al
 c
op
yr
ig
ht

x

5.21 Energy usage of the system during testing for Prototype 1 118

5.22 Energy usage of the system during testing for Prototype 2 119

5.23 Energy usage of the system during testing for Prototype 3 120

5.24 Energy usage of the system during testing for Prototype 4 120

5.25 Total energy usage of the prototypes after completing measurement

process

121

©
 T
hi
s i
te
m
 is
 p
ro
te
ct
ed
 b
y
or
ig
in
al
 c
op
yr
ig
ht

xi

PENGOPTIMUMAN SISTEM OPERASI TERBENAM UNTUK

SISTEM PENGECAMAN WAJAH

ABSTRAK

Pengoptimuman oleh pengkompil telah dibuktikan berupaya untuk
meningkatkan prestasi dan memperbaiki kecekapan kod-kod binari bagi aturcara.
Kebaikan pengoptimuman terhadap kod atucara semasa proses pengkompilan adalah
jelas terhadap prestasi sistem, pretasi memori, akses cakera, kecekapan penggunaan
tenaga dan dalam hampir semua aspek lain sistem. Ini secara khususnya menarik
bagi sistem terbenam di mana prestasi dan kecekapan begitu ditekankan.
Penyelidikan ini bertujuan bagi mengimplementasikan teknik pengoptimuman
pengkompil terhadap proses pembangunan sistem operasi dan mengkaji kesan
implementasi tersebut terhadap prestasi dan kecekapan sistem. Thesis ini
menggariskan teknik-teknik untuk membangunkan sistem operasi khas berasaskan
teras Linux dan cara untuk mengimplementasikan teknik pengoptimuman semasa
proses pembangunan dan kompilasi. Memfokuskan sistem pengecaman wajah yang
diimplemen di atas sistem terbenam, kesan pengoptimuman dikaji dari segi kesannya
terhadap prestasi perisian dan juga perkakasan. Dari segi perisian; kajian dilakukan
terhadap prestasi proses booting, kelajuan perlaksanaan kod dan kecekapan kod
binari oleh prototaip yang dibangunkan dengan tahap pengoptimuman yang berbeza.
Dari perspektif perkakasan pula, kajian dilakukan terhadap saiz penggunaan memori,
penggunaan arus elektrik dan kecekapan tenaga. Keputusan yang diperolehi
menunjukkan bahawa pengoptimuman pengkompil bukan hanya bermanfaat apabila
diterapkan pada kod program, tapi juga menunjukkan kesan baik apabila diterapkan
pada sistem operasi.

©
 T
hi
s i
te
m
 is
 p
ro
te
ct
ed
 b
y
or
ig
in
al
 c
op
yr
ig
ht

xii

EMBEDDED OPERATING SYSTEM OPTIMIZATION FOR

FACE RECOGNITION SYSTEMS

ABSTRACT

 Compiler optimizations have been proven to be beneficial in improving
performance and efficiency of binary codes across different type of operating
systems. Improvement from optimization of program code during compilation are
obvious to the system performance, memory performance, disk access, energy
efficiency and nearly all aspect of the system. This is particularly attractive to an
embedded system where performance and efficiency are seriously considered. This
research focuses on implementing those proven compiler optimizations to the
development of an embedded operating system and studying the effect of such
implementation to the performance and efficiency of the system. This thesis outlines
the methods available to develop a custom operating based on the Linux kernel and
ways to implement such optimization during the compilation and development
process. Focusing on face recognition systems implemented on embedded Single
Board Computers, optimization effects to an embedded operating system are studied
through software and hardware perspective. From the software perspective; booting
performance, code execution performance and binary efficiency of different
prototypes developed with varying level of compiler optimization are tested and
examined. From hardware side; system memory footprint, current draw, power
consumption and energy usage of the different prototypes are tested and measured.
Results obtained in this thesis shows that compiler optimization are beneficial not
only when applied to the program code, but also have significant effects when
applied to the operating system.

©
 T
hi
s i
te
m
 is
 p
ro
te
ct
ed
 b
y
or
ig
in
al
 c
op
yr
ig
ht

CHAPTER 1

INTRODUCTION

An embedded system is a special-purpose computer system that is designed to

perform very small sets of designated activities. Embedded systems date back as early

as the late 1960s where they used to control electromechanical telephone switches. The

first recognizable embedded system was the Apollo guidance computer developed by

Charles Draper and his team (Raghavan et.al, 2006). Later they found their way into the

military, medical sciences, and the aerospace and automobile industries. Today they are

widely used to serve various purposes; some examples are the following:

i. Network equipment such as firewall, router, and switches.

ii. Consumer equipment such as MP3 players, cell phones, PDAs, digital

cameras, camcorders and home entertainment systems like TiVo.

iii. Household appliances such as microwaves, washing machines, and

televisions set top boxes.

iv. Mission-critical systems such as satellites and flight control.

©
 T
hi
s i
te
m
 is
 p
ro
te
ct
ed
 b
y
or
ig
in
al
 c
op
yr
ig
ht

2

Embedded systems are playing important roles in our everyday lives, even

though they might not necessarily be visible. Some of the embedded systems we use

everyday control the menu system on television, the timer in a microwave oven, a

cellphone, an MP3 player or any other device with some amount of intelligence built-in.

In fact, recent data poll shows that embedded computer systems currently outnumber

humans in the US (Wikibooks, n.d.).

Unlike fully featured personal computers, embedded systems require a different

kind of operating system different from the larger operating system designed for

ordinary computers. Since embedded system are bound with small memory footprint

with a fraction of the processing power usually available in desktop personal computers,

it requires a different breed of operating system specifically built for embedded system

environment.

This research focuses on developing an embedded operating system based on the

newer Linux kernel 2.6 for face recognition systems. Compiler optimization sequences

are also implemented during the development phases and the effects of such

optimizations to the performance and power requirement of the system are studied in

this research.

1.1 Problem Statement

Embedded systems require a different breed of operating system different from

the ones used by the normal personal computers. Implementing minimal memory size,

small storage size and with a fraction of the computing power, an embedded system

©
 T
hi
s i
te
m
 is
 p
ro
te
ct
ed
 b
y
or
ig
in
al
 c
op
yr
ig
ht

3

would significantly benefit from a streamlined operating system developed with

embedded system in mind.

To the best of our knowledge, there is very little research that have been done on

the effects of operating system miniaturization on the speed and performance compared

to fully featured operating system for an embedded system. A streamlined operating

system developed for a specific purpose might be beneficial for the entire system

performance and could theoretically lead to a better performing system.

Larger operating system have too much components not needed for embedded

system operation. Much of these components can be removed to lower the operating

system size. After removal, the size of the operating system will be smaller thus

reducing the required storage size and could theoretically help in improving the entire

system speed. An operating system specifically built from the ground up to target a

particular embedded device could prove to be a better option because the entire system

could be kept at a minimal size and extra features only added when required. By

controlling the operating system function and operation, the operating system itself

could be developed to provide only the specific functions required by the target system

and other unnecessary functions and components could be removed.

With the introduction of the newest Linux kernel (version 2.6), major

improvements that could not be integrated into the previous kernel (version 2.4) could

now be put into practice. Though it has been 4 years since the new generation kernel has

been introduced to the community, adoption by the embedded community has been

slow with only a handful of embedded operating system that make use of the new

kernel.

Compiler optimizations have been proven by various studies to be beneficial for

system performance, improving memory performance, whilst reducing power

©
 T
hi
s i
te
m
 is
 p
ro
te
ct
ed
 b
y
or
ig
in
al
 c
op
yr
ig
ht

4

consumption. It also helps in reducing footprint size of compiled binaries (Lombardo,

2002) thus making the entire system smaller in size. Though have been proven

numerous time to be beneficial, little have been studied the effects of such optimizations

when applied to an operating system.

1.2 Project Aim

To develop an embedded operating system based on the Linux kernel for

improvement of face recognition system process.

1.3 Project Motivation

Compiler optimization have been proven numerous time to be beneficial in

improving system performance (Mehis, 2002 & Wolfe, 2004) and memory subsystem

performance (Kandemir et.al, 2000, Pan, 2004 & Marwedel, 2002), reducing power

consumption (Chakrapani et.al, 2001 & Seng, 2003), reducing memory system

subsystem power consumption (Kim et.al, 2000 & Kandemir, 2001), improving I/O

performance (Kandemir et.al, 1999) and are beneficial to nearly all aspects of the

system.

Though a lot of studies have been done to the hardware and software side, little

attention have been given to the middleware part of a working system which is the

operating system that handles all the system execution and processing. Little have been

studied on how the operating system affects the entire system performance and how

©
 T
hi
s i
te
m
 is
 p
ro
te
ct
ed
 b
y
or
ig
in
al
 c
op
yr
ig
ht

5

compiler optimizations when applied to an operating system would affect the system

and subsystem performance. This study focuses on applying compiler optimizations

which are known to be a great benefit to system performance to the operating system

during development and studies the results of such optimization to the entire system

performance.

Face recognition systems are selected as part of the implementation and

evaluation process mainly because it is one of the most resource taxing real time

systems available. The implementation of both pre-processing and post-processing

algorithms on a face recognition system transformed it to a very resource hungry beast

and requires a considerable amount of processing time to complete. This allows any

improvement made by optimization routines to reflect in the final processing time. A

properly optimized face recognition system should trim down the processing time

required to obtain results thus making the system speedier with better response time.

1.4 Project Objectives

i. To develop an optimized Linux variation for embedded system.

ii. To evaluate the embedded operating system for face recognition system.

1.5 Project Scope

i. Development of the operating system is built around the general Linux

Kernel from the Kernel Source Tree.

©
 T
hi
s i
te
m
 is
 p
ro
te
ct
ed
 b
y
or
ig
in
al
 c
op
yr
ig
ht

6

ii. Implementation of the system is done on a selected Single Board Computer

consisting of an Advantech PCM9375F and a Technologic Systems TS5500.

iii. Performance evaluation and benchmark are done using image processing

algorithm consisting of histogram equalization algorithm and face

recognition through iris detection algorithm.

1.6 Thesis Outline

This thesis are composed of 6 chapters and is organized as follows:

i. Chapter 1 presents the overview and problem statement that clarifies the

driving force and motivating aspect, together with objectives, scope and

thesis layout.

ii. Chapter 2 presents the literature review for the project consisting of brief

introduction towards the Linux and the Linux kernel, embedded systems and

Single Board Computers (SBC), and face recognition systems.

iii. Chapter 3 explains the methodology process used to develop the embedded

operating system prototype and discusses the compiler optimizations

implemented within.

iv. Chapter 4 describes the design of the embedded operating system together

with critical system components selected for implementation and the testing

and evaluation platform used.

v. Chapter 5 outlines the result obtained from the experimental prototype and

the efficiency of the developed system.

©
 T
hi
s i
te
m
 is
 p
ro
te
ct
ed
 b
y
or
ig
in
al
 c
op
yr
ig
ht

7

vi. Chapter 6 concludes the thesis by summarizing the most important ideas and

conclusions. In the end the contribution and possible directions for future

work are discussed.

©
 T
hi
s i
te
m
 is
 p
ro
te
ct
ed
 b
y
or
ig
in
al
 c
op
yr
ig
ht

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter summarizes the research and reading done in developing the

upcoming prototype. In this chapter, basic operating system concepts and

development methods are presented in order to provide a basic understanding on the

development phases. Vital areas and problem stages are identified at the end of the

review thus ensuring a successful build of the target operating system.

2.2 Linux

Linux is an operating system firstly created by Linus Benedict Torvalds in

1991 while he was still in the University of Helsinki. The operating system is built

entirely from the bottom up by a collaboration of developers from all over the world.

The project started to pick up speed when Linus Torvalds posted his idea and his

©
 T
hi
s i
te
m
 is
 p
ro
te
ct
ed
 b
y
or
ig
in
al
 c
op
yr
ig
ht

9

works in a newsgroup, attracting contribution from thousands of developers

worldwide (Raghavan et.al, 2006).

Since the first posting releasing the first Linux version to the world, Linux

has matured into a full-fledged operating system capable of delivering the reliability,

performance and features of the best commercial operating systems on the market

(Hallinan, 2007). The Linux operating system is distributed under an open source

agreement which grants users access to the operating system source code. This

makes the OS a very viable option to be used as a platform for conducting research

on operating system.

With the source code to the Linux kernel available for users and developers, a

few variant of the operating system quickly spawned into the market. These variants,

called a distribution, are built on the same Linux base though sometimes having

different focus and employing different software package and configurations. Some

of the more popular distributions currently available includes Fedora, SUSE, Debian

and Slackware.

2.2.1 The Linux Kernel

The Linux kernel is the single most important component in the Linux kernel.

The kernel handles every hardware interfaces that connects the hardware to the

software layer. The kernel exists as the core component in all Linux systems.

The main repository for the Linux kernel exists at the Kernel Repository site

located at http://www.kernel.org and tracks each and every release of the kernel. This

repository however, doesn’t track the different kernel tree for different architectures

©
 T
hi
s i
te
m
 is
 p
ro
te
ct
ed
 b
y
or
ig
in
al
 c
op
yr
ig
ht

10

that are supported by Linux. Table 2.1 lists alternative locations for the appropriate

kernel for other architectures.

Table 2.1: Kernel repository for different versions.
Processor

architecture
Appropriate

kernel location
Available

download means
 x86 http://www.kernel.org/ ftp, http, rsync

 ARM
http://www.arm.Linux.org.uk/developer
/ ftp, rsync

 PowerPC http://penguinppc.org/ ftp, http, rsync, bitkeeper
 MIPS http://www.Linux-mips.org/ cvs
 SuperH http://Linuxsh.sourceforge.net/ cvs
 M68k http://www.Linux-m68k.org/ ftp, http

The Linux kernel has a numbering scheme system that numbers the different

kernel releases to differentiate between kernel sources intended for development and

experimental work and the versions intended as a stable, production-ready kernels.

The numbering scheme consists of a major version number, a minor version number

followed by a sequence number. Generally if the minor version number is even, it

denotes a production kernel; and if it’s odd, it denotes a development kernel

(Hallinan, 2007). Figure 2.1 illustrates the kernel numbering scheme used to

differentiate between major and minor revisions.

Figure 2.1: Linux kernel numbering scheme.

©
 T
hi
s i
te
m
 is
 p
ro
te
ct
ed
 b
y
or
ig
in
al
 c
op
yr
ig
ht

