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Penyiasatan Eksperimental dan Numerik Prestasi Tiga Penukar Haba Paip 

konsentrik 

 

ABSTRAK 

 
Tiga konsentris paip penukar panas adalah versi sedikit diubah dari penukar panas 

balang ganda. Walaupun desain penukar panas telah menunjukkan kemajuan yang luas, 

mereka umumnya terbatas pada beberapa aliran banyak susunan yang mungkin dan 

banyak terhad pada dua penukar panas fluida. Sebuah tiga konsentris paip penukar 

panas yang dibuat di mana tiga cecair, iaitu air panas, air sejuk, dan aliran air biasa 

dengan suhu yang berbeza dan juga dengan laju massa aliran yang berbeza. Percubaan 

dilakukan untuk laju aliran massa yang berbeza dari cecair panas, sejuk, dan biasa untuk 

tatacara arus-arus co dan kontra-saat ini di bawah terpencil dan bukan-keadaan terpencil 

penukar panas. Dua gabungan aliran untuk cecair diambil, yang pertama apabila arus air 

dingin melalui anulus luar, dan air biasa yang mengalir melalui paip dalam, dan yang 

kedua ketika arus air dingin melalui paip dalam dan arus air muzik melalui anulus luar , 

dengan membiarkan air panas mengalir melalui anulus batin dalam gabungan keduanya. 

Dijumpai bahawa variasi suhu dalam gabungan pertama adalah lebih baik daripada yang 

kedua di mana penurunan suhu outlet air panas lebih tinggi. Kaedah unsur hingga 

digunakan untuk memprediksi variasi suhu dari tiga cecair sepanjang penukar panas 

dengan mengembangkan program komputer menggunakan perisian MATLB.Hal ini 

mendapati bahawa ramalan berangka variasi suhu dari tiga cecair dengan menggunakan 

kaedah unsur hingga mengikuti rapat dengan yang diperolehi dari percubaan baik dalam 

besarnya dan trend. Ekspresi analitis sedia dalam sastera untuk memprediksi titik 

crossover dalam hal lokasinya dijumpai memuaskan dalam penyiasatan ini. Akhirnya, 

daripada analisis parametrik dari pertukaran panas terpencil, dijumpai bahawa dan 

sangat mempengaruhi terhadap prestasi terma, Begitu juga, dari analisis parametrik 

dilakukan untuk penukar panas bukan-terpencil, dijumpai bahawa ada pengaruh yang 

diucapkan dari pada variasi suhu dari tiga cecair terutama pada suhu outlet air sejuk 

untuk rentang suhu persekitaran sekitar dipertimbangkan dalam analisa ini. Untuk 

NTu ≥ 0.05, peratusan perubahan suhu air sejuk outlet dijumpai menjadi 12,42% 

apabila suhu sekitar berdimensi bervariasi dari -0,25 menjadi 0,5. Hal ini meningkatkan 

peratusan perubahan untuk 23,29% saat ini ∞NTu meningkat menjadi 0,1 sementara ini, 

untuk parameter desain lain, perubahan peratusan dalam suhu yang hampir konstan. 
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Experimental and Numerical Investigations of the Performance of Three 

Concentric Pipes Heat Exchanger 

 
ABSTRACT 

 

The three concentric pipes heat exchanger is a slightly modified version of 

double tube heat exchanger. Although the heat exchanger designs have shown extensive 

progress, they are generally limited to few of many possible flow arrangements and 

mostly restricted on two fluid heat exchangers.  A three concentric pipes heat exchanger 

is fabricated wherein three fluids, namely hot water, cold water, and normal water flow 

with different temperatures and also with different mass flow rates. Experiments were 

conducted for different mass flow rates of the hot, cold, and normal fluids for co-current 

and counter-current flow arrangements under insulated and non-insulated conditions of 

the heat exchanger. Two flow combinations for the fluids are taken, first when the cold 

water flows through the outer annulus, and the normal water flows through the inner 

pipe, and the second when the cold water flows through the inner pipe and normal water 

flows through the outer annulus, by allowing the hot water to flow through the inner 

annulus in both combinations. It is found that the temperature variation in the first 

combination is better than the second one where the drop in outlet temperature of the 

hot water is higher. Finite element method is used to predict the temperature variation of 

the three fluids along the length of heat exchanger by developing a computer program 

using MATLB software. It is found that the numerical predictions of the temperature 

variation of the three fluids by using the finite element method follow closely to those 

obtained from experiments both in magnitude and trend. The analytical expression 

available in the literature to predict the crossover point in terms of its location is found 

to be satisfactory in the present investigation. Finally, from the parametric analysis of 

the insulated heat exchange, it is found that the 1R  and NTu  affect strongly on the 

thermal performance ,Similarly, from the parametric analysis carried out for the non-

insulated heat exchanger, it is found that there is  a pronounced effect of ∞NTu on the 

temperature variation of the three fluids especially on the outlet temperature of cold 

water for the range of the surrounding ambient temperature considered in the present 

analysis. For ∞NTu ≥ 0.05, the percentage change in outlet cold water temperature is 

found to be 12.42% when the dimensionless ambient temperature varied from -0.25 to 

0.5. This percentage change increases to 23.29% when ∞NTu  is further increased to 0.1 

while, for other design parameters, the percentage change in temperatures are nearly 

constant. 
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1

CHAPTER 1 

 

INTRODUCTION 

 

1.1 Overview 

 
Heat exchangers have been used in various industries for a wide range of 

applications (Incropera et al., 1990; Smith, 1997). Some of these applications may be 

found in space heating, air conditioning, power production, waste heat recovery, and 

chemical processing. Besides that, heat exchangers are an essential part of the food 

industry. Pasteurization, sterilization, drying, evaporation, cooling, and freezing are just 

a few of the purposes that they are being used for (Zuritz, 1990). Heat exchangers have 

been categorized based on flow directions (parallel-flow, counter-flow, and cross-flow), 

type of construction of the heat exchanger (such as tubular or plate heat exchangers), or 

based on the contact between the fluids (direct or indirect). The type of heat exchanger 

to be used is determined by the process and the product specifications. Nevertheless, 

tubular heat exchangers play a major role in accomplishing the heat exchange needs of 

the food industry. The most common tubular heat exchanger is the double tube heat 

exchanger (Sunders, 1988). It consists of two concentric tubes of the same length but 

different diameters. In this configuration, two fluids exchange the heat between them. 

 

1.2 Three Concentric Pipes Heat Exchanger Definition 

A three concentric pipes heat exchanger is a slightly modified version of double 

tube heat exchanger. In this case, there are three concentric pipes and three fluids 

exchange heat between them, one of the fluids (to be heated or cooled) flows in the 

inner annulus formed between the inner pipe and outer annulus pipe. Therefore, the 

three concentric pipes heat exchangers provide better heat transfer efficiencies 

compared to double concentric pipes heat exchangers.  
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Because the third pipe improves the heat transfer through an additional flow passage 

and a larger heat transfer area per unit exchanger length. 

   

1.3 Thermal Design Problem 

  

 There are two design problems to be addressed for the heat exchanger under 

investigation (Sekulic and Shah, 1995). These are known as rating problem and sizing 

problem. Rating problem discusses the performance of the heat exchanger whereas the 

sizing problem deals with the design of the heat exchanger. In both problems, heat 

transfer coefficients are assumed to be known. These two problems are now discussed 

in the following sub-sections. 

 

1.3.1 Rating Problem  

 The outlet temperatures for the three fluids flowing through the heat exchanger 

are obtained depending upon:  

1. The type of the heat exchanger (direct or indirect), the configuration of the fluids  

    flowing   through it, and the complete dimensions.  

2. Number of the communication surfaces whether they are two or three. 

3. Mass flow rate of the three fluids, and the flow arrangements. 

4. Thermal properties of the fluids. 

5. Inlet temperatures of the three fluids flowing through the heat exchanger. 

 

1.3.2 Sizing Problem  

To specify the value of heat exchange between the hot fluid and other two fluids 

in three concentric pipe heat exchanger, there is a need to indicate the heat exchanger 
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type, fluid flow arrangement and the physical size (length, diameters and thickness of 

the pipes), and calculate the most important parameter NTu for the heat exchanger. 

 

1.4 Problem Statement  

 In a conventional insulated heat exchanger, there is one thermal communication 

for heat transfer from one fluid to another. When the insulation is removed, there is an 

additional thermal communication due to the heat loss to the environment (Barron, 

1984). The problem gets complicated when the second and /or third thermal 

communication is introduced by the third fluid stream in the so-called three fluids heat 

exchanger (Sekulic and Shah, 1995). The practical data of the temperature variation of 

the three fluids along the length of the heat exchanger in such a heat exchanger is not 

available in the literature. The thermal performance of three concentric pipes heat 

exchanger, where one of the fluid (to be heated or cooled) flows in the inner annulus 

formed between the innermost and intermediate pipe, while the second fluid flows in the 

annulus between the intermediate pipe and the outer pipe is to be analyzed. The third 

fluid flows inside the innermost pipe. The direction of flow of these three fluids can be 

changed manually as desired. The heat exchanger is firstly insulated from the ambient to 

avoid heat transfer to the surrounding, and then the insulator is removed to indicate the 

effect of ambient on the performance of heat exchanger.  Experiments are conducted for 

different mass flow rates of the hot, cold, and normal fluids. The thickness of the pipes 

is small. Therefore, its effect as thermal resistance is neglected in the analysis. 

 The methodology used to predict the temperatures variation along the length of heat 

exchanger is by applying the finite element method as numerical solution and then use 

the analytical solution for the three concentric pipes heat exchanger.  
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The temperature variations of the three fluids are evaluated using a computer program 

developed by MATLAB software. The experimental results are compared with those 

predicted by finite element method for the same operating conditions. The comparison 

of the three results is given first for the co-current parallel flow conditions followed by 

the counter-current parallel flow heat exchanger when the heat exchanger is insulated. 

Then the same is repeated for the case of non-insulated condition to indicate the effect 

of surrounding ambient on the performance of the three concentric pipes heat 

exchanger. This procedure is followed once when the cold water flows through the inner 

pipe and normal water flows in outer annulus pipe, and next when the normal water 

flows through the inner pipe and cold flows through the outer annulus. It may be 

pointed out that the hot water flows through the inner annulus in both the above 

mentioned cases. 

 

1.5 Objectives 
 

The present research has the following objectives: 

 

 1. To design and fabricate the three concentric pipes heat exchanger.  

  2. To investigate the temperature variation along the length of three concentric-pipes  

      heat exchanger for each fluid experimentally.  

 3. To investigate the effect of ambient (non-insulated condition) on the performance of   

      three concentric pipes heat exchanger experimentally. 

 4. To investigate the temperature variation along the length of heat exchanger 

      numerically by applying the finite elements method and compare the predicted result 

      with those obtained from the experiments.  

 5. To study the performance of three concentric pipes heat exchanger by applying the 

      analytical method and compare the results with the experimental performance.  
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CHAPTER 2 

 

LITERATURE REVIEW  
 

2.1 Introduction 

There are a large number of engineering applications of heat exchanger, such as 

in heating and cooling the space, power plant, food manufacturing and chemical 

fabrication. The three concentric pipes heat exchanger offer better heat exchanging this 

mainly due to the addition of the third pipe into the double pipe heat exchanger. The 

addition of the third pipe increases the thermal contact between the three fluids. There 

are many researches explaining the design and performance of two fluids heat 

exchangers for different flow arrangements. An impressive list of information is 

available in relevant references during the past 80 years for the design and analysis of 

double pipe heat exchanger. With addition of third fluid stream increases the complexity 

of design for the new category of heat exchanger.  

 

2.2 Thermal Analysis of the Heat Exchanger   

 
Morley (1933) analyzed the three concentric pipes heat exchanger in steady state 

and investigated the temperatures difference through the heat exchanger for all fluids. 

Based on the theory of energy balance and rate equations, he obtained third differential 

equation for the temperatures distribution along the length of heat exchanger. In 

addition he offered the formulas for all three fluids temperatures distributions 

throughout the heat exchanger. Furthermore, he obtained the solution in terms of 

unknown coefficients of integration, which he suggested in terms of boundary 

conditions specified for a given problem. 
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Hausen (1950) addressed Morley’s work and defined an explicit form of 

temperature difference for three fluids heat exchanger for the case of counter-current 

flow arrangement. His solution is algebraically well organized, but he did not identify 

that one can determine in some cases the size of the heat exchanger without a trial and 

error method. It is important to note that Hausen described how to perform the 

calculation procedure in the general case of variable heat capacities of the fluids and/or 

the variable heat transfer coefficients.  

 

Rao (1977) analyzed the co-current and counter-current parallel flow three fluids 

heat exchanger in the form of temperature variations between the fluids as dependent 

variables. The heat exchanger had three communications. The general solution for the 

temperature differences along the length of heat exchanger under steady-state operation 

and for constant proprieties was presented in dimensional form without defining related 

design parameters. 

 

Kancir (1980) presented the temperature distributions for the parallel flow heat 

exchanger in counter-current flow arrangement. He used a matrix algebra process. The 

form of the solution is like the existing solutions but neither detailed quantitative nor 

qualitative comparisons were prepared.          

 

Skulic et al. (1995) offered in detail a review on thermal design theory of three 

fluids heat exchanger, where they have allowed the third fluid temperature to vary 

according to the main thermal communications while neglecting interaction with the 

ambient. They classified the heat exchanger in several ways according to the heat 

transfer process, where the flow arrangement, basic construction, the heat transfer 

mechanisms, and the number of fluids involving are considered for the heat exchanger. 
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Unal (1998) conducted a theoretical study for the three concentric pipes heat 

exchange. His model involved a set of equations derived for adiabatic three concentric 

pipes heat exchanger using some suitably defined parameters such as heat capacity, 

number of transfer units NTu , and some other dimensionless parameters. The physical 

model of the system was modified for counter-current flow arrangement. To reduce the 

difficulty and make the derivation more easy the following assumptions were 

considered:  

1. All working fluids are incompressible. 

2. No phase change occurred through the heat transfer process. 

3. Properties of the fluids are under steady-state. 

4. There is no heat loss to the surrounding ambient from the heat exchanger. Thus the 

    heat exchanger was fully insulated. 

 By following these assumption and applying the conservation of energy principle for 

small control volume with length of ( dx ) yields the following equation. 

312 QdQdQd &&& +=                                                                                                            (2.1) 

In the above equation, the differential values of heat transfer rates jQd & , denote heat lost 

by hot fluid or heat gained by cold fluid flow between locations (x) and (x + dx), and 

since there is no phase change accrued  the differential heat flow rates can be expressed 

in form of mass flow rates, specific heat and temperature different as shown below. 

( ) ( ) ( ) jjpjjj dTCmxQdxxQQd &&&& =−+=                                                                           (2.2) 

where j = 1, 2, 3 stand for the fluids flowing through the inner pipe, intermediate and 

outer pipe, respectively, in the same time, the differential heat gains of cold fluid 

through the differential control volume can expressed in terms of the difference between 
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bulk temperature of hot and cold fluid streams, 12 TT −  and 32 TT − , overall heat transfer 

coefficients, 31 ,UU , and the corresponding differential heat transfer surface areas, 

( ) 1112211 dAUTTQdQd −== &&                                                                                           (2.3) 

( ) 3332233 dAUTTQdQd −== &&                                                                                         (2.4) 

Again , for the purposed  of simplicity, by assuming that the pipe walls are thin, the 

differential surface areas and overall heat transfer coefficients appearing in the above 

equations can given as. 

dxrdA 11 2π= , dxrdA 22 2π= ,

1

21
1

11
−









+=

ihh
U  and  

1

32
3

11
−









+=

io hh
U  

where, A = cross section area, r = radii of pipe, h = heat transfer coefficient  

 For, simplicity using the following definitions: 

( )
21 pCmC &= , ( )

22 pCmC &= , ( )
33 PCmC &= ,  LrA 11 2π= ,  LrA 23 2π= ,   

cihi TTT −=∆ . 

and, the dimensionless parameters: 

L

x
X = ,

2

1
1

r

r
r =∗ , 

3

2
2

r

r
r =∗ , 

iT

TT

∆

−
=Θ 12

1 , 
i

ci

T

TT

∆

−
=Θ 2

2 ,
iT

TT

∆

−
=Θ 32

3 and 

2

1
1

C

C
Cr = , 

2

3
3

C

C
Cr = , 

1

33
1

C

AU
N = ,

3

33
2

C

AU
N =  

The governing energy balance equation can be reduced into: 

( ) 01 333111
1 =Θ−Θ−+

Θ
rr CNCN

dX

d
                                                                              (2.5)                                                  

( ) 01 111333
3 =Θ−Θ−+

Θ
rr CNCN

dX

d
                                                                              (2.6)                                   

( )333111
2 Θ+Θ=

Θ
rr CNCN

dX

d
                                                                                       (2.7) 

By replacing 3Θ and 1Θ , respectively from equations (2.5) and (2.6), the following 

second order ordinary differential equations were obtained for cold fluid flow:  
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01
1

2

1
2

=Θ+
Θ

+
Θ

B
dX

d
A

dX

d
                                                                                             (2.8) 

03
3

2

3
2

=Θ+
Θ

+
Θ

B
dX

d
A

dX

d
                                                                                            (2.9) 

where, the coefficients A and B are defined as: 

( ) ( )3311 11 rr CNCNA −+−=  and ( )[ ]3131 1 rr CCNNB +−= .  

The boundary conditions for counter flow arrangement can be specified in 

dimensionless form as: 

( ) ( ) ( ) i
cihi

ciho

TT

TT
Θ=

−

−
=Θ=Θ=Θ 000 321                                                                      (2.10) 

( ) iirrx FNCNCN
dX

d
Θ=Θ−+=

Θ
= 1133110

1                                                                (2.11) 

( ) iirrx FCNCN
dX

d
Θ=Θ+=

Θ
= 233110

2                                                                       (2.12)  

( ) iiirrx FNCNCN
dX

d
Θ=Θ−+=

Θ
= 333110

3                                                                (2.13)    

 

The common solution of the above linear uniform second order ordinary differential 

equation was presented completely with all probable cases.  

The physical model for the co-current flow arrangement where both cold and hot fluids 

enter the heat exchanger at x = 0, was solved with inlet temperatures of ciii TTT == 31  

and hii TT =2 , respectively, and the flow in the positive x-direction.  

 

Following the same procedure as mentioned for co-current flow arrangement, 

the dimensionless governing equations for counter-current flow arrangement, were 

presented by Unal (1998). The main difference in governing equations comes from the 
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negative temperature gradient in bulk hot temperature with respect to x. The simple 

energy balance equation for this type of flow arrangement is  

312 QdQdQd &&& +=−                                                                                                       (2.14) 

Using the same procedure as discussed for the co-current flow arrangement the 

differential equations for the three fluids were obtained as: 

01
1

2

1
2

=Θ+
Θ

+
Θ

B
dX

d
A

dX

d
                                                                                           (2.15) 

( )333111
2 Θ+Θ−=

Θ
rr CNCN

dX

d
                                                                                   (2.16) 

03
3

2

3
2

=Θ+
Θ

+
Θ

B
dX

d
A

dX

d
                                                                                           (2.17) 

 The boundary conditions are: 

( ) ( ) ( ) 1000 321 =
−

−
=Θ=Θ=Θ

cihi

cihi

TT

TT
                                                                           (2.18) 

( )[ ] 133110
1 1 FCNCN

dX

d
rrx =+−−=

Θ
=                                                         (2.19) 

( ) 233110
2 FCNCN

dX

d
rrx =+−=

Θ
=                                                                               (2.20) 

( )[ ] 333110
1 1 FCNCN

dX

d
rrx =−+−=

Θ
=                                                         (2.21) 

It may be noted that the differential equations for cold fluid streams are the same 

as those of co-current flow arrangement. The solutions for non-dimensional bulk 

temperature variations are the same except that iΘ , 1F , and 3F are different in boundary 

conditions. This difference occurs in hot fluid temperature due to difference in the sign 

of hot fluid gradient with respect to x. The equations derived in this study, are useful for 

both design calculations and performance calculations and also can be used to determine 

of the bulk temperature variations along the length of heat exchanger but it does not 
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