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Abstract: This study proposes a new method for computing f(U) where f 1s a real continuous function and U
is a fuzzy interval. The computation of f(1J) is performed by incorporating optimisation technique into Zadeh’s
extension principle. By discretising ¢ up to n fimite numbers, a set of n closed and bounded mtervals 1s
obtamed. Here, the computation of f on closed and bounded intervals is the same 1dea of solving unconstrained
optimisation problems. For every finite numbers of «, if the function to be optimised is unimodal, the authors
apply Brent’s method. One of the main advantages of using this method is that it does not recuire the
calculation of derivative. In case where f 1s reduced to monotone or to a straight line, the optimal solutions are
obtained at the endpoints of intervals. This new strategy gives better results and requires only few function
evaluations. An example is provided to illustrate the effectiveness of the proposed method.
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INTRODUCTION

Fuzzy set theory has witnessed an exponential
development since its introduction in 1965 (Zadeh, 1965),
both from the theoretical and applied point of view. One
of the most fundamental principles of fuzzy set theory 1s
Zadeh’s extension principle. It provides a general way of
extending a real function of one or more variables to a
function accepting fuzzy sets on the real line as
arguments. In general, the practical use of Zadeh’s
extension principle can be quite complicated. Of particular
interest is the case of continuous functions and fuzzy
intervals as arguments. In that case, the extension
principle can be performed in a parallel manner, by
computing the ¢-cuts of the output, which turns out to be
a fuzzy mterval as well This observation allows
researcher to carry over interval arithmetic to fuzzy
mnterval arithmetic. If the function 1s moenotone, then the
endpoints of the output can be determined quite easily, as
is for instance the case for the addition of fuzzy intervals.
However, the difficulty arises when the function 1s
non-monotone. In that case, the computation of the
¢-cuts is not an easy task (Chalco-Cano et al., 2009).

In the literature, research on computational methods
proposes several approaches to fulfil the requirements of
Zadel’s extension principle. For instance, Kaufmann and
Gupta (1991) have described an analytical method based
on ¢-cuts and mterval arithmetic. Unfortunately, the
results are not completely satisfying. This is because the

use of direct interval arithmetic to obtain the output of
some continuous functions of fuzzy variable can lead to
overestimation into the results of computation. The main
drawback of using the direct mnterval anthmetic is that the
formalism cennot represent the dependency among
variables (Makino and Berz, 1999). Considering different
occurrences of the same variable as independent can lead
to repetition of some numerical computations. Then, there
exist possible errors into computation. Eventually, the
errors may produce approximations that are wider than the
correct one (Bonarini and Bontempi, 1994).

Due to this, many researchers have proposed some
other techmques such as the requisite constraint
(Klir, 1997), the fuzzy weighted average (Dong and Wong,
1987; Yang et al., 1993), the vertex method (Dong and
Shah, 1987), the transformation method (Hanss, 2002) and
the spline approximation method (Chalco-Cano et af.,
2009). However, the proposed methods mcreased
computational complexity when applied to non-monotone
functions as well. To overcome this deficiency, a new
technique with better accuracy and low computational
complexity should be investigated.

PRELIMINARIES

In this section, the basic idea of fuzzy sets will be
introduced and some important concepts will be
explained.
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Fuzzy sets: The notion of a fuzzy set is an extension of
that of a classical or crisp set. Let X be a set of objects,
called the universe, whose generic elements are denoted
by x. Membership in asubset A of X can be viewed as
a characteristic function, or membership function
A ¥~ {0, 1} such that:

A(x):{l’TfXEA’ (1)
0ifxg A

The set {0, 1} is called the valuation set. If the
valuation set is allowed to be the real unit interval [0, 1],
then A is called a fuzzy subset of X or simply a fuzzy set
in X In this case, A(x) is interpreted as the degree of
membership of the element x in the fuzzy set A.

Definition 1: Let A be a fuzzy set defined on ®. The
support of A is the crisp set of all points on § such that
the membership degree of A is non-zero, that 1s:

supp(A) =fx € R AGX) > 0} @
Definition 2: Let A be a fuzzy set defined on R. The core
of A is the crisp set of all points on S such that the
membership degree of A 15 1, that 1s:

core(A) ={x e R A(x)=1} (3

Definition 3: Let A be a fuzzy set defined on &. A 15
called a fuzzy interval if:

»  Aisnormal: There exists x, € i such that A(x,) =1
o Aisconvex: forallx, y € ®and, 0< A < 1 it holds
that:

Al + (1- L)y = min{ A(x), A(y))

* A 1s upper semi-continuous: for any x, € R, 1t holds
that:

Alxy) 2 lim Ax)
X%

o [Af={xe®R|AM =20} i5a compact subset of K.

The ¢-cut of a fuzzy mterval A, with 0 <g<] 1s the
crisp set:

[AT = {xe %[ AX)> o) 4)

For a fuzzy mterval A, its g-cuts are closed mtervals
in Rf; we denote them by:

[A]° =[aF.a%] )

Definition 4: A fuzzy mterval A 1s called a tnangular fuzzy
interval if its membership function has the following form:

0, ifx<a,
X728 ipa<x<h,
Axy=/ P2 (6)
E7X ifpexse,
c—b
0, ifx=c,
and its ¢-cuts are simply:
[A* =[a + b — a), ¢ — e — b)), e (0,1] 7

This definition asserts that the triangular fuzzy
number A is defined by three mumbers a <b < ¢ where the
core of the triangle 1s at x = b and its support 15 the
interval (a, b). In this study the authors write A(a, b, ¢) for
a triangular fuzzy mterval. The set of all fuzzy intervals 1s
denoted by F(5t).

Fuzzy interval arithmetic: In this subsection, the authors
recall fuzzy interval arithmetic and present some of its
operations. Arithmetic operations of fuzzy interval
arithmetic are extensions of the operations of interval
arithmetic itroduced by Moore (1966).

Consider two fuzzy mtervals A and B. The basic
arithmetic operations of A and B are defined as follows:

*  Additon:
[A+B]*=[a + b, a7 + b
»  Subtraction:
[A-B]*=[a" —bf.a7 — b’]
»  Multiplication:
[AxB]*=[c.¢;]
where

o

¢ =min{a’by’.a by ab a,b5)
¢y =max (a7b",a"b by, aib)
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s+ Division:

{AT:W,@]

B

with og B where

& i
b7 b b3 bf
& ] 5 0
by by by by

The extension principle: Tt is useful to define functions
on fuzzy sets. Any crisp function can be extended to take
fuzzy set as its argument by applying Zadeh’s extension
principle (Zadeh, 1965). Let f be a function from X to Y.
Given a fuzzy set A in X and want to finda fuzzy set
B =1{{A)inY thatis induced by f. If f is a monotone then
B =f(A) can be determined as follow:

£ A)(y)z{f“f"(y)) if x< ranged) (8)
0 Jif x & range(f)

Tt is clear that Eqg. 8 can be easily calculated by
determming the membership at the endpoints of the
¢-cuts of A. However, in general, the process of finding
the fuzzy set B = f{A) 18 more complicated and cammot be
unplemented in a practical way. For example, if f 15 a
non-moenotone, then the problem arises when two or more
distinct points in X are mapped to the same point in Y. If
this is the case, the above Eq. may take two or more
different values. This requires a new extension of Eq. 8 as
enlisted below:

sup A(x) ;
F(AYY) = e ,?f xe range(f) (9)
0 ,if x& range(f)

where,
Ty ={xeX|[fx) =y}

The Eq. 9 is called Zadeh’s extension principle.
Roman-Flores et al. (2001) have shown that if f: X-Y is a
continuous function, then f: F(X) -F(Y) is a well-defined
function and:

[FCAN] = AT (10)

for all ae[0, 1] and AeF(X).

MATERIALS AND METHODS

The dependency problem: The standard operations of
fuzzy interval arithmetic provide a manageable way to
compute functions of fuzzy variable. However, the same
fuzzy wvariable is considered independently in its
operations. This characteristic can lead to overestimation
in computation. To show this shortcoming, the authors
give the following example.

Consider the triangular fuzzy interval 1U(-2, 0, 2). The
corresponding ¢-cuts of U are [U]" = [-2+2¢, -2a+2] for
€0, 1]. The authors take the function £: R~ % defined by
f(x) = x+x’ and want to find f{U). There are two common
ways to obtain f{U). First, the authors apply the
straightforward fuzzy mnterval arithmetic:

FQUP)=[-2+ 20,20+ 2]+ [ 2+ 20,20+ 2] (7
=[-2+ 20,20+ 2] +[d7,d7]

where,

df =min [(—2 + 200)*, (—2 + 200(—20¢ + 2)
{(—200 + 2)(-2 + 20), (20 + 2)]

a5 =max [(-2+2ary’, (-2 + 200)(— 20 + 2)
(20 + 2)(—2+ 2e0), (200 + 27

If & =0, the solution is:
f(UP)=[-6.6] (12)

For the second approach, the authors use Zadeh’s
extension principle by assuming that the variable 1 is
independent:

F(U)=U + U’ (13)
For « = 0, the solution 1s therefore:

£(UT)=[-26] (4)

Unfortunately, the both solutions are not the correct
range of f{(x) for all xc[U]" . To get the correct range of f{(x),
the authors define the right hand side of Eq. 13 as one
single expression and from that the authors use Zadeh’s
extension principle and not part by part. By referring to
the example discussed above and applying this idea to it
then the new solution is:
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£(qUT)=[-025.6] (15)
which is the correct range of f{x) for all xc[U]".

Discretisation of fuzzy intervals: There are two ways of
discretising a fuzzy interval. Researchers can discretise
either on the variable domam or on the membership value
(Dong and Shah 1987). In this study, the authors concern
the latter approach. One of the reasons is that the pealk
point, at which the membership degree is 1, is guaranteed
to be mcluded i the discretised counterparts. But this
carmot be sure for any discretisation on the variable
domain.

First, the authors discretise a=[U]" up to n finite
numbers with length ae = 1/(n-1) . Hence, a set ¢ is
obtained as follow:

o ={04,0ly,... Oy, O } (16)
where,
o =0, =0, +AC

anda,=1for1=2,3 ... ,n Let A be a fuzzy mterval with
¢-cuts denoted by:

[AT =[af,2]]

for ae[0, 1]. By discretising ¢« up to n finite numbers, the
authors get the following set of intervals:

I={[A]" . [A], . [AT®, .. [A]™} (17)

For the different «-cuts of fuzzy interval A the
following holds:

[A™ C[A]*, Yor, 0., € [0, 1]witho; <., (18)

fori1=1, 2, .., n-1. It 15 clear that the ¢-cuts of fuzzy
interval A are connected. This means that the lower value
of o will give wider intervals compared to the higher value
of «. For each:

o, [A]*

can be constructed as the umion of sub-intervals
according to the following Eq:

[A]* =[a®, 2™ |Ua™ a% U [a%: a% ] (19)

for all oo, <[01] with ¢, <, (Fig. 1).

Let f: #-%R be a continuous function. Given a fuzzy
mnterval A in R and the authors want to find a fuzzy
interval B = f{A) induced by f through Zadeh’s extension
principle. The authors compute:

[BI* =f([A]") (20)

at each level of o for i =1, 2, ..., n according to the
following Eq:

Bf;ffmm[ min f(x),
]

xefa gt

min  f(x), min f(x (21)
e, e+ ) xe[afi*] 1] ( )}

b —mmx| max f(x), max f(x), max f(x (22)
o L{aﬁai’“‘] ( )xe[ai“‘“,a;“‘“] ) wefag el ( )}

fori=1,2, ., n-1 Here; % and %  are the minimum and
maximum values at points x% and x*_, respectively. The
points X% and x5 are defined as Eq. 23 and 24,

respectively:

(23)

X% =min [x€ [a*,a% | f(x) =15, ]

X%, —max [xe [a%,a2 ]| 1(x)= b, ] @4

The optimisation problems in Eq. 21 and 22 will be
performed by using Brent’s method (Brent, 2002). The
goals are to find the minimum:

X €2 ']

Fig. 1: g-discretisation of a fuzzy interval
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and the maximum:

%, €3t a)]

such that:
H{ESES{C Wi
and:
FOO<T(x%,)
for all:
xe[a* a7]

In order to increase the speed during computation,
the authors propose a new strategy to find the minimum
and the maximum values over the interval:

[a%,a;%]

The authors start from the highest value of ¢ and
continue downward until the smallest value of « is
reached. For instance, at ¢, there are three optimisation
problems to be solved (Eq. 21 and 22). However, the
second optimisation problem can be omitted since 1t has
already been solved at «,, For this, the authors only
consider the first and the third optimisation problems. By
taking the minimum (maximum) of all results of the
optimisation problems, a new minimum value (a new
maximum value) is obtained. The minimum (maximum) at ¢
can be similar to or smaller (bigger) than the minimum
(maximum) found at ¢, ,, depending on the function under
consideration. This process 1s repeated for all levels of a.
Consequently, a set of intervals which finally turns out to
be a fuzzy interval is obtained as enlisted in the following
Eq

O={[B]*.[B]....[BT*....[B™} (25

Here:

[BT* =[b%,. b,

where, b and £ are defined as in Eg. 21 and 22,

respectively.
Next, the authors introduce the following two errors:

Definition 5: Let R be a continuous function. Given a
fuzzy mterval A on ®. The Horizontal-Error of B = f{A) 1s
given by:

E% =[b — b5 [+]b5 —B5% |i=12..0, (26)
where,

[BT* =[b7,b%] A B =[5 b2, ]

min® ~max

are the a-cuts of analytical solution and approximation
solution, respectively.

Definition 6: Let R~ R be a continuous function. Given a
fuzzy interval A on R. The Vertical-Error of B= f{A) 18
given by:

E =|f(AXbE,) — F(AXDE, )+ 27)
(AN, )~ FANDE, )|

1=1, 2, ...,n, where, F(ANDE ) and f(A)XD: ) are the
membership values of analytical solution and f(A)b%, )
and f(A)b% ) are the membership values of approximation

solution.

Numerical example: In this section, the authors use the
proposed method to illustrate the computation of Zadeh’s
extension principle for a continuous function.
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Fig. 2: Fuzzy interval U
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Fig. 3: Function Handle
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Fig. 4: Comparison between analytical solution (solid
line) and its approximation (circle mark)
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Fig. 5: Elapsed CPU time (sec)

The authors consider the following triangular fuzzy
interval TJ defined by:

0 if x<-2,
—X+—- ,if-2=xs—,
U= 3 2 (28)
—gxﬁ—f if—leSL
2
0 if x>1

The a-cuts of U are given by:

[UT* :Bu - z,%oc + 1} (29)

The authors take the function R - R defmed by:

£(x)=x? (30)

and compute f(U) = (UY through optimisation technique.
Please note that the function f is unimodal defined over
the interval [-2, 1]. Tt has an extreme point at x = 0. From
Zadeh’s extension principle, the analytical solution 1s
given by:

Table 1: Approximation errors

o Horizontal -error Vertical-error
0.0 0.0000 0.0000
0.1 0.0000 0.0000
0.2 0.0000 0.0000
03 0.0000 0.0000
04 0.0000 0.0000
0.5 0.0000 0.0000
0.6 0.0000 0.0000
0.7 0.0000 0.0000
0.8 0.0000 0.0000
0.9 0.0000 0.0000
1.0 0.0000 0.0000

Table 2: Number of finction evahiations

n Our proposed method The transtormation method
11 61 66
21 121 231
L 241 861
61 361 1891
81 481 3321
101 601 5151
0,if y<0,
2 2 2 2. 1
max| =¥ +—,——fy+= [[if0<y<—,
[3\/; 33 Y 3] Y 4
2 4 2 2 1
FANY) = x| —— a5 oy +o pifceysy G
(A) { Bﬁ 3 3 ¥ 3 4 Y
2 4,
—Jy +—,if1=y=4,
3 Y 3 Y
0, y>4

The graphs of U, f(x) and f(17) are depicted in Fig. 2,
3 and 4, respectively. In Fig. 4, the authors compare the
approximation solution with the analytical solution
obtained via Zadeh’s extension principle. The authors
observe that the approximation solution equals to the
analytical solution. The approximation errors (up to four
decimal digits) are listed in Table 1.

In term of computational complexity, the authors
observe that the total number of function evaluations
required in this example s lower than the total munber of
function evaluations required in the transformation
method (Table 2). ITn general, one can say that if the
mumber of « is large, then the method proposed in this
study offers a significantly better complexity.

Furthermore, the execution time (in elapsed CPU
seconds) for the different numbers of ¢ is mentioned in
Fig. 5. It 1s consistent with the total number of function
evaluations since the execution tiume increases as o
Inereases.

CONCLUSION
The authors have presented a new method for

computing a function that takes a fuzzy interval as its
arguments. The main advantage of the proposed method
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is that it does not need a large computer memory and the
speed up in computation is guaranteed. Moreover, it does
not need information about derivative of a function. In the
future, this proposed method will be incorporated into
classical numerical methods for solving differential
equations with fuzzy initial values.
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