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One of the ways on how to speed up multiplication is to use more adders to speed 

the accumulation of partial products. The best-known method for speeding up the 

accumulation is the Wallace Tree multiplier, which is an adder tree built from carry-save 

adders, which is simply an array of full adders whose carry signal are not connected, as in 

the early stages of the array multiplier [8]. 

 

 

 

2.1 Wallace Tree Multiplier 
 

The Wallace tree multiplier is considerably faster than a simple array multiplier 

because its height is logarithmic in the word size, not linear [8]. However, in addition to the 

large number of adder required, the Wallace tree’s wiring is much less regular and more 

complicated. As a result, Wallace trees are often avoided by designers, whom design 

complexity, is a consideration. Callaway et. al [8] also evaluated the power consumption of 

multipliers. They compared an array multiplier and a Wallace Tree multiplier, and found 

that the Wallace tree multiplier used significantly less power for bit widths between 8 and 

32, with the advantage of the Wallace tree growing as word length increased [8]. Wallace 

Tree styles use a log-depth tree network for reduction. Faster, but irregular, they trade ease 

of layout for speed. Although the speed-size tradeoffs for these two styles are fairly well 

characterized, the power tradeoffs are not well understood. Wallace tree styles are best 
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avoided for low power applications, since the excess wiring is likely to consume extra 

power. While substantially faster than the carry-save structure for large multiplier word 

lengths, the Wallace Tree multiplier has the disadvantage of being very irregular, which 

complicates the task of coming up with an efficient layout. The irregularity is visible even 

in the 4-bit implementation [5]. 

 

The Wallace multiplier is a high speed multiplier. Figure 2.1 shows 8-bits x 8-bits 

high speed Wallace Tree multiplier design. The summing of the partial product bits in 

parallel using a tree of carry-save adders became generally known as the “Wallace Tree”. 

Three step processes are used to multiply two numbers. 

• Formation of the bit products. 

• Reduction of the bit product matrix into a two row matrix by means of a carry-save 

adder. 

• Summation of the remaining two rows using a fast carry-propagate adder (ripple-

carry adder) to produce the product. 
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Figure 2.1: An 8-bits x 8-bits high speed Wallace Tree multiplier design [3] 

 

 

 

2.2 D Flip-flops 
 

In digital circuits, the flip-flop is an electronic circuit which has two stable states 

and thereby is capable of serving as one bit of memory. A flip-flop is controlled by one or 

two control signals and/or a gate or clock signal. The output often includes the complement 

as well as the normal output [20]. 

 

Flip-flops can be either simple or clocked. Simple flip-flops consist of two cross-

coupled inverting elements – transistors, or NAND, or NOR-gates – perhaps augmented by 
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some enable/disable (gating) mechanism. Clocked devices are specially designed for 

synchronous (time-discrete) systems and therefore ignore its inputs except at the transition 

of a dedicated clock signal (known as clocking or pulsing). This causes the flip-flop to 

either change or retain its output signal based upon the values of the input signals at the 

transition. Some flip-flops change output on the rising edge of the clock, others on the 

falling edge. 

 

Flip-flops can be further divided into types that have found common applicability in 

both asynchronous and clocked sequential systems: the SR ("set-reset"), D ("data"), T 

("toggle"), and JK types are the common ones; all of which may be synthesized from (most) 

other types by a few logic gates [20]. The behavior of a particular type can be described by 

what is termed the characteristic equation, which derives the "next" (i.e., after the next 

clock pulse) output, Qnext, in terms of the input signal(s) and/or the current output, Q. 

 

The D flip-flop can be interpreted as a primitive delay line or zero-order hold, since 

the data is posted at the output one clock cycle after it arrives at the input. It is called data 

flip-flop since the output takes the value in the Data (D) [20]. The D flip-flops are used as a 

clocking mechanism to get the speed when using the timing analyzer tools in the Altera 

Quartus II software. It is also used as the pipelined stages in this design to increase the 

speed of the 8-bits x 8-bits high speed Wallace Tree multiplier. 

 

The characteristic equation and the truth table of the D flip-flop are as below: 
 

Qnext = D 

 

 

Table 2.1: Truth table for D flip-flop 
 

D Q Clock Qnext

0 X Rising edge 0 

1 X Rising edge 1 
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2.3 Carry-save Adder (CSA) 
 

When three or more operands are to be added simultaneously (e.g. in multiplication) 

using two-operand adders, the time consuming carry-propagation must be repeated several 

times. If the number of operands is k, then carries have to propagate (k-1) times. Several 

techniques for multiple operand addition that attempt to lower the carry-propagation 

penalty have been proposed and implemented. The technique that is most commonly used is 

carry-save addition. In carry-save addition, we let the carry propagate only in the last step, 

while in all the other steps we generate a partial sum and a sequence of carries separately. A 

carry-save adder (CSA) is therefore, capable of reducing the number of operands to be 

added from 3 to 2, without any carry propagation.  

 

A carry-save adder may be implemented in several different ways. In the simplest 

implementation, the basic element of the carry-save adder is a combination of two half 

adder or a single full adder. Figure 2.2 and Table 2.2 shows the logic circuit and the truth 

table for a 1-bit half adder. 

 

Logic expression for a 1-bit half adder: 

• sum = a  b ⊕

• c_out = ab 

 

 

 

 

 

 

 

 
Figure 2.2: Logic circuit for a 1-bit half adder 
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Table 2.2: Truth table for a 1-bit half adder 
 

a b sum c_out

0 0 0 0 

0 1 1 0 

1 0 1 0 

1 1 1 1 

 

 

Figure 2.3 and Table 2.3 shows the logic circuit and the truth table for a 1-bit full adder. 

 

Logic expression for a 1-bit full adder: 

• sum = a  b  c_in  ⊕ ⊕

• c_out = ab + (a  b)c_in ⊕

 

 

 

 

 

 

 

 

 

 
Figure 2.3: Logic circuit for a 1-bit full adder 
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Table 2.3: Truth table for a 1-bit full adder 
 

a b c_in sum c_out 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 

 

 

The basic CSA accepts three n-bit operands and generates two n-bit results; an n-bit 

partial sum and an n-bit carry as in Figure 2.4.  

 

 

 

 

 

 

 

 

Figure 2.4: Creation of an n-bit carry-save adder 
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A carry-save adder is effectively a “1’s counter” that adds the number of 1’s on the 

inputs and encodes them on the sum and carry outputs as summarized in the table below.  

 

 

Table 2.4: A carry-save adder as a 1’s counter 
 

A B C Carry Sum Number of 1’s 

0 0 0 0 0 0 

0 0 1 0 1 1 

0 1 0 0 1 1 

0 1 1 1 0 2 

1 0 0 0 1 1 

1 0 1 1 0 2 

1 1 0 1 0 2 

1 1 1 1 1 3 

 

 

A carry -save adder is therefore also known as a (3, 2) counter, Figure 2.5, because 

it converts three inputs into a count encoded in two outputs. The carry-out is passed to the 

next more significant column, while a corresponding carry-in is received from the previous 

column. Therefore, for simplicity, a carry is represented as being passed directly down the 

column. The Wallace Tree multiplier requires [log 3/2 (N/2)] levels of (3, 2) counters to 

reduce N inputs down to 2 carry-save redundant from outputs. Unfortunately, the routing 

between levels becomes much more complicated. The longer wires have greater wire 

capacitance and the irregular tree is difficult to layout. 
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Figure 2.5: Carry-save adder (CSA) or also known as a (3, 2) counter 
 

 

A [4:2] compressor as in Figure 2.6 can be used in a binary tree to produce a much 

more regular layout [12]. It takes four inputs of equal weight and produces two outputs. It 

can be constructed from two (3, 2) counters. Along the way, it generates an intermediate 

carry into the next column and accepts a carry from the previous column, so it may more 

aptly be called a (5, 3) counter [12]. The regular layout and routing also make the binary 

tree attractive. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.6: 4-2 compressor [12] 
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2.4 Ripple-carry Adder (RCA) 
 

The addition of two operands is the most frequent operation in almost any 

arithmetic unit. A two-operand adder is used not only when performing additions and 

subtractions, but also often employed when executing more complex operations like 

multiplication and division. Consequently, a fast two operand adder is essential. 

 

The most straightforward implementation of a parallel adder for two operands xn-1, 

xn-2…, x0 and yn-1, yn-2…, y0 is through the use of n basic units called full adders (FA). In a 

parallel arithmetic unit, all 2n input bits (xi and yi) are usually available to the adder at the 

same time. However, the carries have to propagate from the full adder in position 0 (the 

position of the full adder whose inputs are x0 any y0) to position i in order for the full adder 

in that position to produce the correct sum and carry out bits. In other words, we need to 

wait to wait until the carries ripple through all n FAs before we can claim that the sum 

outputs are correct and may be used in further calculations. Because of this, the parallel 

adder shown in Figure 2.7 is called a ripple-carry adder. Note that the full adder in position 

i, being a combinational circuit, will see an incoming carry ci = 0 at the beginning of the 

operation, and will accordingly produce a sum bits si. The incoming carry ci may change 

later on, resulting in a corresponding change in si. Thus, a ripple effect can be observed at 

the sum outputs of the adder as well, continuing until the carry propagation is complete.  

 

 

 

 

 

 

 

 

 
 

Figure 2.7: A ripple-carry adder (RCA) 
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