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ABSTRAK

Tujuan kajian ini adalah untuk menilai tahap kelayakan proses keseimbangan
kelarutan menggunakan propane superkritis. Sebuah model termodinamik berdasarkan
pada kajian teori penyelesaian biasa untuk menilai kegiatan ekspresi pekali setiap tahap
untuk campuran sebatian gas untuk meramal data kelarutan. Kegunaan persamaan diambil
daripada teori penyelesaian termodinamik untuk mengumpul dan meramal kelarutan reksa
yang dibincangkan dengan rujukan pasangan binari-(propana / Heksan dan propana /
dekana sistem). Hal ini boleh disimpulkan ‘hahawa sesetengah pengiraan parameter
diperlukan untuk pengiraan sebegini akan-menjadi sukar jika heksana komponen terlarut
atau berat atau dekana di LPG atau LING yang peka terhadap suhu atau sebatian kompleks
tentang yang dikenali untuk .struktur formulanya. Satu prosedur alternatif kegiatan
ekspresi pekali daripada teori penyelesaian biasa yang dikenali sebagai teori UNIFAC
untuk setiap tahap..Perhitungan sepanjang garis-garis ini digambarkan dan dasar fizikal
untuk melaksanakan kaedah ini adalah dalam keadaan yang relevan untuk dibincangkan.
Pendekatan secara khusus teori UNIFAC telah dijumpai untuk berada pada ramalan yang

baik untuk kajian system dan komposisi LNG LPG buat masa sekarang.
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ABSTRACT

The objective of this work is the assessment of the feasibility studies of phase
equilibria mutual solubility process utilizing subcritical propane. A thermodynamic model
based on regular solution theory studies to evaluate activity coefficients expression to each
the heavy compound such as (propane and hexane) and the solvent such as propane in
order to predict mutual solubility data. The use of equations<derived from thermodynamic
of the regular solution theory for collecting and predicting mutual solubility discussed with
reference to binary pairs (propane / hexane and jpropane / decane systems). It is concluded
that the calculation of some of the parameters required for these calculation would be
difficult if the solute or heavy component hexane or decane in LPG or LNG were sensitive
to temperature or complex substance about which little was known apart for its structural
formula. An alternative procedure is to apply activity coefficients expression of the regular
solution theory from. which is called Universal Functional Activity Coefficient theory
(UNIFAC) to each phase. Calculation along these lines described and the physical basis for
applying this method under the relevant condition discussed. The UNIFAC theory
approach in particular has been found to be in good estimation for the present studies of

these systems LNG and LPG composition.
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