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ABSTRACT: Air pollution data obtained using automated machines often contain missing values which can cause bias due
to systematic differences between observed and unobserved data. We used interpolation and mean imputation techniques to
replace simulated missing values from annual hourly monitoring data for PM10. The most effective method for generating
the missing data points was to replace each missing value with the mean of the two data points before and after the missing

value. This approach was referred to as the mean-before-after method.
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INTRODUCTION

Air quality monitoring is carried out to
detect any significant pollutant concentrations
which may have possible adverse effects to human
health. However, such analysis is complicated by
the frequently large proportions of observations
missing from the data due to machine failure, routine
maintenance, changes in the siting of monitors,
human error, or other factors. Incomplete datasets
may lead to results that are different from those that
would have been obtained from a complete dataset!.
There are three major problems that may arise when
dealing with incomplete data. First, there is a loss of
information and, as a consequence, a loss of efficiency.
Second, there are several complications related to
data handling, computation and analysis, due to the
irregularities in data structure and the impossibility of
using standard software. Third, and most important,
the results may be biased due to systematic differences
between observed and unobserved data. At present,
there are certain statistical software packages such
as SPSS? that can perform limited replacement of
missing values.

One approach to solve incomplete data
problems is the adoption of imputation techniques®.
Therefore, this research focuses on several single
imputation techniques to determine the best technique
to replace missing values.

Generally, there are two important types of
missing data®. Non-ignorable is where the probability
of missing a datum is dependent upon its value and
ignorable missing data is where the probability of
missing a datum is not dependent upon its value.
There are three forms of ignorable missing data. The
first is associated with sampling. In most situations
it is neither efficient nor possible to obtain data from
a whole population. Probability sampling is widely
used to obtain a representative population sample’.
The second form of ignorable missing data is missing
at random (MAR)?. It occurs where the pattern of
missingness for a particular variable (Y) may vary
for subsets. In this research, the MAR form of
ignorable missing data is used because the missing
data mechanism of air quality data is generally
random. A third form of ignorable missing data is
missing completely at random (MCAR), where the
missingness occurs at random across the whole data
set®.

From a complete dataset, incomplete datasets
need to be generated in order to test the methods. In
a study of methods for imputation of missing values
in air quality datasets, Junninen et al* generated
three randomly simulated missing data patterns for
evaluating the methods in different missing data
conditions. Blended data patterns in the proportions
Ya, Y2, and Y4 were constructed for examining the
methods in a way that reflected the heterogeneity of
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the air quality datasets. The patterns were simulated

with 10% and 25% missing data. Twisk and Vente®
have carried out similar work (using 10% or 25%
missing data of types MCAR, MAR, and MNAR)
on generated incomplete data sets from longitudinal
studies.

Most studies of single imputation techniques
have been done in areas other than engineering.
Engels and Diehr® compared four methods and found
that the ‘last and next” method and last observation
carried forward are the best methods to replace
missing values. Perneger and Burnand’ considered a
population-based survey to compare the performance
of several single imputation techniques. They
recommended an imputation algorithm based on the
number of key missing items.

MATERIALS AND METHODS

Data

Annual hourly monitoring records for PM10
in Seberang Perai, Penang, Malaysia were selected to
carry outthe simulation of missing data. The test dataset
consisted of particulate matter (PM10) concentrations
on a time-scale of one per hour (hourly averaged)
for one year. A total of 8,757 hourly concentrations
are available of which 0.03% (3 observations) are
missing (Table 1). The data shows some variability
in the PM10 concentration (range: 8-718 pg/m’,
standard deviation: 58.5 pg/m?). The data is skewed
to the right showing that high concentrations of PM10
sometimes occur.

From the complete PM10 dataset, randomly
simulated missing data patterns with 5%, 10%, 15%,
25%., and 40% of the data missing were produced for
evaluating the accuracy of imputation techniques.

Single imputation techniques

Imputations are means of drawing from
a predictive distribution of the missing values,

Table 1 Characteristics of PM10 data.

Number of valid data points 8757
Number of missing data points 3
Mode 45.0
Standard deviation 58.5
Skewness 3.6
Kurtosis 21.9
Percentiles 25 42.0
50 65.0
75 94.0
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and therefore require a method of creating such a
predictive distribution based on the observed data.
Complete data matrices can be created using either
single imputation or multiple imputation methods?.
With single imputation, one value is estimated for each
missing datum. It has appealing features; for example,
the standard complete-data method can be applied
directly, and the substantial effort required to create
imputations is only needed once. Multiple-imputation
is a method of generating multiple simulated values
for each missing item in order to properly reflect the
uncertainty attached to missing data®.

In this analysis, six single imputation
techniques were applied to estimate the simulated
missing values. Four of these were interpolation
techniques (linear, quadratic, cubic, and nearest
neighbour interpolation). The remaining two were the
mean imputation techniques which we will refer to as
the mean-before-after and mean-before methods.

Interpolation

In linear interpolation two data points
are connected with a straight line and hence the
interpolation function is given by?®

Sy () =by+b (x=x)) )]
where x is the independent variable, x, (i = 0,1,2,...) is

a known value of the independent variable, and b, are
unknown coefficients. Then from (1),

by = f(x,) 2)
and
L LO0I6) o
X, =X,

in which in this case /= f.

If three data points are available, interpolation
is carried out using a quadratic polynomial. A
particularly convenient form for this estimation is®,

S5 (x) = by+by(x—x;) + b, (x—x,)(x—x) 4)

The coefficients b and b, are obtained from (2) and
(3) with /= f,. The coefficient b, is obtained using

Sy = f() )= ()

X, —X

b = 2 1 1 0 5)

with /=7,

When four data points are available, a cubic
polynomial can be applied. The cubic interpolation
formula has the form’
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f3(x)=b0 +b1(x—x0)+b2(x—x0)(x—x1)+
by (x = xy )(x = x )(x = x,) (6)

The coefficients b, b,, and b, are obtained
from (3-5), and b, is given by
f(x3)_f(x2) 3 f(xz)*f(xl) B f(x])_f(xo)

37% 27N 1%
by = (7)

3770
with /=7,

Univariate nearest neighbour imputation is
probably the simplest scheme available in that the
endpoints of the gaps are used as estimates for all
the missing values*. The equation for the nearest
neighbour method is given by

(x 2~ x1)
2

8
(x2_x1) ®
2

where y is the interpolant, x is the time point of the
interpolant, y; and x; are the coordinates of the
starting point of the gap, and y, and x, are the
coordinates of the end point of the gap.

Y1 ifox1+

Yo if xX>x +

Mean imputation techniques

Let y, »,...,y, be a times series with n
observations of which £ values denoted by y,y;,..., y:
are missing. Thus, the observed data with missing
values are'’

*
yl ,y2 ,....,ynl ,yl ’yn1+1 ,yn1+2 yerney

% %
ynz,yz’yn2+1’yn2+2"""yk’yn ©)

Therefore, the first missing value occurs after
n observations, the second missing value occur after
n, observations, and so on. Note that there might be

more than one consecutive missing observation.

The mean-before-after method replaces all
missing values with the mean of one datum before the
missing value and one datum after the missing value.
Thus for the data in (9), y] will be replaced by"’

Y T
yp=—~1L—1 10
1 3 (10)
and y;will be replaced by
Yy TV
7= n,” nytl (an

2
and so on.

The mean-before method replaces all missing
values with the mean of all available data before the
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missing values. Thus for the data in (9),y] will be

replaced by’ .
I B
N = —Zy,- (12)
I’ll i=1
and y 5 will be replaced by
V, = >, (13)

(n - n —l)l I’l+1
and so on.

Performance indicators

Fourperformanceindicators, namely, prediction
accuracy, coefficient of determination, mean absolute
error, and root mean square error, were used to assess
the imputation methods. The theoretical and observed
data were compared to select the best method for
estimating missing values.

Prediction accuracy (PA) is computed using"

X (¢-7)o; -0)]

(N-1) op 0y (19

PA=)"

i=1

where N is the number of imputations, O, and P, are
the observed and imputed data points, respectively, O
and P are their averages, and 0, and 0, their standard
deviations. PA values range from 0 to 1, with higher
values of PA indicating a better fit.

The coefficient of determination (R?) explains
how much of the variability in the imputed data can
be explained by the fact that they are related to the
observed values or how close the points are to the
line. It is given by*

 2fe-)o,-0|

N Cp O

R2:

(15)

R’ takes on values between 0 and 1, with values closer
to 1 implying a better fit.

The mean absolute error is the average
difference between predicted and actual data values,
and is given by*

MAE :iﬁ‘Pi—oA (16)
N i=1

MAE ranges from 0 to infinity and a perfect fit is
obtained when MAE = 0.

The mean-squared error is one of the most
commonly used measures of success for numerical
prediction. Its value is computed by*
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1 N 2
RMSE =.— " [P-0;] (17)
The smaller the RMSE wvalue, the better the

performance of the model.
RESULTS AND DISCUSSION

Characteristics of simulated missing data

Table 2 shows the descriptive statistics for all
the simulated missing data patterns. The mean value
varies very little with the percentage of missing data
points, and is consistently higher than the median.
Although there are differences in the amount of data,
it is interesting that the analysis produces similar
results for all percentages of missing values. From
Table 3, it can be seen that there is very little variation
in the percentiles with the percentage of missing
values. This is due to the way in which the missing
values were generated, and to the occurrence of a
large number of observations within the same range.

Replacement of simulated missing values

The mean-before-after method gives the best
result(smallesterrorand highest values of PAand R?) for
each percentage of missing values (Table 4). Among
the mean imputation techniques, the mean-before
technique gives the worst values for the performance
indicators and the mean-before-after method gives
the best results for all percentages of missing values.
Among the interpolation techniques, the linear
interpolation technique gives the best estimates
for the 10%, 15%, and 25% missing values and the
nearest neighbour method gives the best estimate
for the 40% missing values using the R, MAE, and
RMSE as the performance indicators. Overall, it
seems that the mean-before-after method gives the
best performance for predicting missing values. This
is followed by the linear interpolation technique. The
worst estimators are the mean-before method and the
quadratic interpolation method.

Table 2 Descriptive statistics for simulated missing data.

Percentage of Missing Data 5% 10% 15% 25% 40%
Number of valid data points 8275 7886 7425 6547 5233
Number of missing data points 479 871 1332 2210 3524
Mean 76.9 76.87 77.14 774 712
Standard deviation 58.0 57.8 575 579 58.7
Skewness 355 3.54 354 351 357
Kurtosis 222 222 219 214 226
Range 710.0 710.0 707.0 707.0 710.0
Minimum value 80 80 8.0 8.0 8.0

Maximum value 718.0 718.0 715.0 715.0 718.0
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Table 3 Percentiles of data for simulated missing values.

Percentage of missing

values 5% 10% 15% 25% 40%
Valid 8275 7886 7425 6547 5233
Missing 479 871 1332 2210 3524
Percentile 25 420 430 43.0 43.0 43.0
50 65.0 650 650 650 64.0
75 940 94.0 950 950 95.0
95 171.0 171.0 170.0 171.0 173.0

Table 4 Performance of methods for various percentages
of mission values.

P Method PA R’ MAE RMSE
L 093 086 18.08 24.61
5% Q 0.12 002 43.54 5380
C 093 085 1856 2534
N 090 080 2146 29.54
A 093 087 1725 23.71
B 0.85 072 2590 35.65
10% L 092 085 17.80 25.53
Q 092 084 1836 26.55
C 091 083 1840 26.76
N 090 080 20.77 29.84
A 093 086 1693 2435
B 0.83 0.69 2532 3633
15% L 093 086 17.15 23.68
Q 092 084 18.07 25.09
C 092 085 17.55 24.21
N 0.88 0.78  20.80 30.61
A 093 086 16.61 23.27
B 0.84 070 2411 34.78
25% L 0.89 077 1921 27.82
Q 0.87 076  20.19 29.44
C 0.88 0.78 19.71 28.57
N 0.86 074 2125 31.32
A 0.88 0.77 1833 29.12
B 0.83  0.68 23.74 3450
40% L 0.83 0.69 2242 3285
Q 031  0.67 2351 3437
C 0.82 0.68 23.11 34.05
N 0.85 073 2176 31.61
A 0.88 077 19.12 27.79
B 0.81 066 2461 3555

P=Percentage of Missing Values

PA = prediction accuracy, R* = coefficient of determination, MAE = mean absolute error,
RMSE = root mean squared error

L = Linear C = Cubic

Q = Quadratic N = Nearest neighbour

A = Mean-before-after B = Mean-before
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