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Abstract. Vision systems have been used in many applications that intends to reduce the need
for human operators. This is especially true for tasks that are simple but repetitive in nature,
which is largely applicable to most manufacturing and agriculture’s post-harvest processes.
Many such processes utilize conveyor-based systems where the objects being processed are placed
on a conveyor belt that runs through multiple processing stations. Implementing a vision system
to capture images of an object that is moving usually requires setting up an imaging device to
a working conveyor system. Getting a working conveyor system to be ready can take some
time and consequently delay development work on the vision system itself, especially those
involving image processing algorithms. This paper proposes a software solution that can be
used to expedite initial work on such systems. The solution is written in C and is therefore
easily ported to any development machine. A basic image processing library has also been
developed so that it does not depend on any development library or suite, which is usually huge
in size. Thus, the solution can easily be compiled and run on embedded development boards
like Raspberry Pi - for a more portable solution.

1. Introduction

Vision systems are getting more attention among researchers and developers. This is
understandable from a system point of view, since an image can produce a huge amount of
information compared to normal sensing elements. In theory, vision capabilities enable a system
to identify objects and their relative positions [1]. Consequently, this also means that vision
systems require a more complex processing system with powerful processing elements [2].

Many processing tasks, especially the ones related to manufacturing and agriculture, are now
turning to vision systems for simple but repetetive tasks that were traditionally done by humans.
As imaging devices and processing elements get faster, real-time image processing applications of
many such tasks becomes feasible and realiable for system implementations. Such applications
usually involve conveyor systems, where the imaging system is installed at a processing station.
Figure 1 shows a block diagram for a generic structure of a conveyor-based vision system.

In manufacturing, vision systems can be used to identify products (i.e. target object) that
are being processed either for classification or quality assurance. In [3], such system is being
used to detect bottles and to increase the precision of filling the bottles with intended liquid. In
another case [4], a vision system is even used to detect defect in on the conveyor belt itself.
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Figure 1. Generic Visualization of a Conveyor-Based Vision System

Agriculture post-harvest processing is another application that is utilizing the usefulness of
having vision systems as part of their overall system. Tasks like fruit-sorting [5] and classification
(or grading) [6] are actually taking advantage of the availability of such system.

In the next section, a couple of existing implementations of conveyor-based vision systems will
be discussed. The following section will cover the proposed software solution for testing image
processing algorithms on a conveyor-based system. Consequently, some analysis on practical
implementations of the proposed solution will be presented, before more advanced features are
discussed in the following section.

2. Existing Work

Most papers do not disclose any information on the methods used at the initial stage of the
project when the conveyor is still not ready. Therefore, this section will mostly review a few
recent papers that have a conveyor-based vision system setup and analyze the setup of such
systems.

2.1. Simple Laboratory Setup
Some systems do not need such tight requirements, either in terms of size or equipments, that it
can virtually be built anywhere and still easily moved to another location. This makes it easier
to have a mock setup in a laboratory environment, where the researchers can simply start their
work.

In [5], a mango sorting system consisting of conveyor system, web camera and a personal
computer (PC) has been built. With a dimension of about 1 meter wide, 2 meters in length and
height, it can easily be built inside a laboratory environment. Hooking up a web camera and
having a desktop computer nearby completes the whole setup. In this work, it seems that all
the image processing work was done after the setup was completed, which might have taken a
few days if not weeks.

2.2. Industrial-level Setup
Some systems are actually too complex or too tedious to build, that it might as well be built
in its intended industrial environment. In [7], such system was built as a novel industrial robot
sorting technology. Using industrial manipulator robot arms and intelligent camera, the setup
could not possibly be built in a laboratory. The size and setup of the manipulator robot arms
themselves would make it impractical to be setup anywhere else. The system uses Cognex In-
sight 7000 series industrial intelligent camera. Work to set up such a system would have taken
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quite a considerable amount of time and would require the software development team to work
on site if no simulators are available.

3. Proposed Solution

In order to develop a software solution involving images, a basic image library that defines the
image format and provides basic image manipulation functions is required. For that purpose, an
open-sourced software my1imgpro has been developed and is used as the base for this solution.
It is written in C programming language, which makes it highly portable. It has, in fact, been
ported to a Xilinx Vertex-II Pro development board, which has a dual PowerPC core running
on scarcely-available internal RAM-blocks. This simply shows that it does not require a huge
amount of resources to run. The proposed solution involves developing codes that are capable
of creating conveyor-like video data, on top of my1imgpro library.

3.1. Features of my1imgpro
To represent an image, the my1imgpro software uses a data structure named my1image t with
5 members: width, height, data, length and mask. The first two members, width and height, are
obviously integever values used to store image dimensions. Meanwhile, data is a pointer to a
dynamically allocated memory of an integer array that holds image pixel values. The size of
this pixel array location is saved in length. Although length seems redundant at first, it can save
many multiplication operations required when trying to process the data as a one dimensional
array.

The my1imgpro software was initially developed to process grayscale images. However, as
time goes by, it is found that having colour representation is a very useful feature to have. That
is the reason for mask, the last member in the my1image t image data structure. It can be used
to indicate whether the pixel values are actually 8-bit grayscale values or 24-bit RGB (Red-
Green-Blue) values. The library also provides functions to manipulate pixels and image regions,
functions to load and save image files, along with functions to view the image in Graphical User
Interface (GUI). The GUI-related functions are provided by the GTK library.

In addition to those mentioned above, a video data structure my1video t has also been defined.
It is also a generic data structure, and can theoretically be used with any video capture library
and provide a standard interface for applications to analyze the image stream within the video.
In order to prove that this structure is adequate, the ffmpeg audio-video library has been used
as the backend interface to the capture medium, which can be either a file or a live camera feed.

The my1imgpro software is available at https://github.com/azman/my1imgpro as an open-
source software.

3.2. Conveyor-like video library
With a library like my1impro already available, work on creating a conveyor-like video generator
becomes a lot easier. Instead of have two possible sources for an image stream, a third option
has been added whereby the software reads all image files from a designated path and present
them as scrolling images that will make any objects in the image look like they are moving on
a conveyor system instead. The general idea is as shown in Figure 2.

From implementation point of view, the code basically finds all image files in a path through
simple verification process and saves the file names of valid images in a queue list. Then, through
iteration, the first two images from the queue are loaded into memory and their file names are
reinserted at the back of the queue. This obviously gives an infinite supply of images for the
conveyor-like video.

Focusing on code simplicity rather than faster loading time, all operations mentioned earlier
are currently implemented in a single thread. As soon as the first image goes out of the intended
viewport, the next image file in queue will be loaded into memory and attached to remaining
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Figure 2. Shifting Image into View for Conveyor-like Effect

image in view. This might create a tolerable slight pause, depending the loading time of the an
image.

The main challenge of implementing the conveyor-like image stream is sequencing the image
data, i.e. shifting the image, into view. The two-dimensional image data is actually stored in a
single-dimensional array, starting with the first row going into the next. Clearly, accessing the
rows is not a problem because pixels in a row are already in sequence. However, accessing a
column, which is what we need to do in our case, requires an alternative strategy.

While shifting into view, a variable is used to keep track of the next column available. Using
this value as an base index, the column pixel data are obtained by offsetting the index by image
width, which would get us to the next pixel in the column. Obviously, the process increases
processing time but that can be tolerated at the moment since the code implementation is
simpler this way and the output are still acceptable. Despite all this, the application using this
code so far has shown sufficiently satisfying results.

The code for conveyor-like video generator will also be released as open-source software in
the near future.

4. Implementation Analysis

The proposed solution has been used in a project meant for fruit sorting application. At the
initial stage, building a conveyor system can take some time and getting fruit samples for testing
algorithms can be a challenge, especially for seasonal fruits. With the proposed solution, having
just 2 sample pictures of the target fruit would be enough to get things started. As can be seen
in Figure 3, the target fruit for that project are mangoes.

Figure 3. Two Sample Pictures of Mangoes on Conveyor System

In the mentioned project, two pictures of mango which incidently are taken while on a
conveyor system, were used as source images. This may not seem much, but with some image
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manipulation like rotation using 90 degrees steps and mirroring, we can easily get 16 samples
instead. However, even in its original form, the two images can provide endless video image
stream for any algorithm testing.

Figure 4 shows how the two images can be used to generate a conveyor-like video. The upper
row shows the generated video image stream, while the lower row shows filtered video image
stream. As can be seen from there, the filter actually detects mangoes only when it can be seen
as a whole mango.

Figure 4. Top row shows the original stream and the bottom row shows filtered stream

Practically, the proposed solution can be used in two different setups. First, a target
application with the algorithms being tested can be built together with the conveyor-like video
generator code into a single binary. Basically, that means that it can be run together on the
same platform (most probably a desktop computer). This is exactly what have been done in
the sample demo presented above.

In another setup, the conveyor-like video generator code can be run on a desktop computer
and displayed on standard monitor. Meanwhile, the target application with the algorithms
being tested can be built separately on the actual intended target platform that has access
to an imaging device that points to the monitor. This setup should be more similar to the
intended application and therefore provide a more accurate test results compared to the first
setup. Figure 5 shows the video generator code running on a desktop PC, while the application
code was running on a Raspberry Pi 3 board with 7” display.

5. Conclusion

A software solution to test image processing algorithms on conveyor-based vision system has been
presented. It would be very useful in purely research environment where building a conveyor-
based system is time-consuming or maybe even not practical. Even without a conveyor system,
development work related to vision systems in general or specifically the image processing
algorithms can be initiated.

Being written in C programming language makes the proposed solution portable to any
platform that has a C compiler - which means, almost all platforms. Since the my1imgpro
library does not require any huge dependencies, other than GTK (for GUI display) and ffmpeg
(for interface to imaging device and video files), the proposed solution is easy to build. It is
also especially useful in embedded systems implementation. The core video generator code can
easily be built on Raspberry Pi for a portable vision system solution.

The effect of loading delay of an image when running the conveyor-like video can be reduced
by introducing multi-thread implementation. A separate thread can be created to handle loading
of the third image while running the first two images. This should create a smoother flow for
the conveyor-like video.

Other than the objects on a conveyor system, the conveyor system itself sometimes requires
similar setup where it needs to inspect the conveyor belts for any damage periodically. This
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Figure 5. Running image capture and video generator on separate platforms

solution can help in the development of such algorithms without having to have actual damage
on the conveyor belts.

Looking further, any applications that involves a vision system looking at objects moving
within a certain path could be benefitted by the proposed solution. For example, it can be
applied to biomedical analysis tool that is used for blood stream imaging, which is similar to
conveyor-like flow.
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