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Abstract. T-way combinatorial testing aims to generate a smaller test suite size. The purpose of t-way 
combinatorial testing is to overcome exhaustive testing. Although many existing strategies have been 
developed for t-way combinatorial testing, study in this area is encouraging as it falls under NP-hard 
optimization problem. This paper focuses on the analysis of existing algorithms or tools for the past seven 
years. Taxonomy of combinatorial testing is proposed to ease the analysis. 20 algorithms or tools were 
analysed based on strategy approach, search technique, supported interaction and year published. 2015 was 
the most active year in which researchers developed t-way algorithms or tools. OTAT strategy and 
metaheuristic search technique are the most encouraging research areas for t-way combinatorial testing. 
There is a slight difference in the type of interaction support. However, uniform strength is the most utilized 
form of interaction from 2010 to the first quarter of 2017.  

1 Introduction  
Software application has become an integral part of our 
daily lives due to its numerous benefits. One’s life can 
turn complicated if software applications fail to perform 
their tasks. Software failures can be prevented by 
implementing software testing activities. Exhaustive 
testing can be carried out to the software to ensure the 
software is bug-free. However software testers will be 
pushed to the limit if exhaustive testing is implemented. 
Enormous number of test cases needs to be performed. 
This situation is impossible to be exercised by software 
tester [1-2]. An increase in the number of test cases 
contributes to increased time of software development 
and cost. Combinatorial software testing is a type of 
testing technique to overcome the problem of exhaustive 
testing which involves interaction of parameters. This is 
because software failures are detected due to interaction 
of few input parameters, or known as  t-way testing, 
where t is the interaction strength [1], [3-4]. 
 To construct t-way combinatorial testing, Covering 
Array (CA) is used. It is the most active research in 
combinatorial testing [4]. Covering array can be defined 
as CA (N; t, k, v) where N represents the rows of the 
array, t is the strength, k is the degree and v is the order 
[3]. 

Many strategies and techniques have been 
developed to cater to t-way combinatorial testing. 
Optimization algorithm is supposed to assist in 
generating smaller test suite size or near optimum 
number of test cases. Generating the optimum number of 
test cases is NP-hard problem [6]. This situation has 
motivated many researchers in this area. Thus, it is the 
aim of this paper to investigate the existing algorithms or 
tools, current and potential knowledge related to t-way 
combinatorial testing. In addition, this paper also 

explores potential improvements in t-way testing.  This 
paper focuses on studies published on combinatorial 
testing from 2010 to the first quarter of 2017. Published 
papers from various types of available databases were 
collected and analysed according to strategy approach, 
search technique, supported interaction and the year 
published. 

This paper is organized as follows: In section 2, 
Combinatorial Software Testing Taxonomy is presented. 
Existing Algorithms and Tools are described in section 3 
while analysis and discussion are highlighted in section 
4.   Lastly, section 5 delivers the conclusion. 

2 Combinatorial Testing Taxonomy  

Taxonomy of combinatorial software testing has been 
developed based on studies done between 2010 and 
2017.  Figure 1 presents taxonomy of combinatorial 
software testing. It can be divided into three main areas 
namely strategy approach, search technique and 
supported interaction.  

Fig.1. Combinatorial Software Testing Taxonomy. 
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2.1. Strategy Approach  

Strategy approach can be categorized into two types of 
strategies. The first strategy is one-test-at-a-time 
(OTAT). OTAT strategies generate only one test case at 
one time. Each test case generated must cover at least 
one t-way combination or uncovered tuples. The best test 
case generated is the one that covers the most t-way 
combinations for all parameters. Once the test case is 
selected, it will be added into a final test suite. This is 
known as vertical extension. AETG [7] is the pioneer of 
OTAT strategy.  
 Another strategy is called one-parameter-at-a-time 
(OPAT). This strategy starts with t parameter. It 
produces test suites for t-wise combination. Next, 
another parameter and a new test are added (horizontal 
extension). During the horizontal extension, a new test 
data might be incorporated into test suite to cover all the 
uncovered t-wise combination. OPAT was popularized 
by IPOG [8] and its families.  

2.2. Search Technique  

The two types of search techniques are computational 
and metaheuristic. General computational approach is 
based on interaction possibilities. It is able to support 
very large configurations. The approach repeatedly 
searches combinations in the searching space until all 
combinations are covered. This is not practical and can 
be costly if there are too many combinations [9]. General 
computational approach is primarily uses greedy 
technique. Greedy technique constructs test cases that 
can cover as many uncovered combinations as possible. 
This technique has been quite effective in generating test 
cases. However, it is easily trapped in local optima [10]. 
 Metaheuristic search technique generates a small 
number of rows in any type of covering arrays, support 
constraints and prioritization [7-8]. This approach starts 
with a random set of solutions. These solutions will 
undergo a series of processes to find the best test case 
using a fitness function. The process repeats until all 
combinations of parameter input are covered. 
Metaheuristic search technique has proven to produce an 
optimum test suite size compared to computational 
search technique. However, the limitation of 
metaheuristic is that it requires more time for test suite 
construction   [9–11].  

2.3. Supported Interactions  

The type of interactions is also an important component 
in constructing combinatorial testing. There are three 
types of interactions to construct test cases namely 
uniform strength, variable strength and Input Output 
Based Relation (IOR).  
 Uniform strength or t-wise combines values of 
parameters with other parameters. The number of related 
parameters is based on the t (i.e. strength). For example, 
pair wise or 2-way testing involves combination of 
values for every two parameters. Pairwise is widely used 
by software testers. Research has found that faults are 

detected by smaller interactions (i.e. t < 2). Nonetheless, 
more research has been conducted and it is discovered 
that more faults can be detected by interactions greater 
than six [13]. The latest strategy has been developed to 
support the coverage strength of 14 [14].  
 Variable strength interaction testing is an extension 
of uniform strength. To ensure that all parameter 
combinations are covered at least once, software testers 
need to run testing at a higher strength or at the highest 
interaction level. Increasing the strength is unnecessary 
because that requires using more resources to do 
unimportant parameter combinations.  In view of this 
problem, variable strength is introduced. Different level 
of strength can be set to different subset of parameters. 
This case is applicable for any application or system that 
needs to be run by multiple configurations [15]. 
 Another form of interaction is IOR. It involves 
combinations of parameters that impact a particular 
output. It caters for any combination of related parameter 
inputs that affect certain output. IOR was initiated as not 
every application or system has the same characteristics 
and also to prevent redundancy of test cases or running 
unnecessary test cases [16]. Through implementation of 
IOR, both uniform and variable strength strategies are 
also applied [17].  Uniform strength, variable strength 
and IOR strategy are further explained in [18]. 

3 Existing Works 
Many algorithms and tools have been explored to be 
used in t-way combinatorial testing. In this section, 
existing algorithms or tools developed from 2010 to 
2017 are further examined. The existing algorithms and 
tools are identified according to the year published or 
their variant. Table 1 presents algorithms/tools published 
by year. 
 

Table 1 Algorithms/tools published by year 
Year Algorithms / Tools 

2010 

Particle Swarm Optimization (PSO) 
 Pairwise PSO (2010) 
 Particle Swarm Test Generator (PSTG) (2010) 
 VS-PSTG (2011) 
 Discrete Particle Swarm Optimization (DPSO) 

(2015) 
 Swarm Intelligent Test Generator (SITG) (2015) 

2011 
 GTWay 
 Integrated T-Way Test Data Generation (ITTDG) 
 AURA 

2012 
Harmony Search 
 Harmony Search Strategy (HSS) 
 HS-PTSGT 

2013 
 DA-RO 
 DA-FO 

2014  General Variable Strength (GVS) 

2015 
 TCA 
 Cuckoo Search (CS) 
 Flower Strategy (FS) 

2016  High Level Hyperheuristic (HHH) 
 Artificial Bee Colony (ABC) 
 Ant Colony System (ACS) 
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2017  Adaptive Teaching Learning Based Optimization 
(ATLBO) 

  
 Particle Swarm Optimization (PSO) is an algorithm 
for t-way combinatorial testing published in 2010.  The 
algorithm is inspired by animal swarms hunting for food. 
Each individual in the swarm moves towards the best 
individual location and the best global location based on 
optimal solution that is calculated according to their 
position and velocity [19]. A few algorithms or tools 
have been developed based on PSO algorithm. 
 The generation of PSO algorithm for t-way testing 
starts with the development of pairwise PSO [19]. 
Researchers have developed two different algorithms 
based on OTAT and OPAT strategies respectively.  
 The utilization of PSO algorithm in previous research 
has encouraged the development of Particle Swarm Test 
Generator (PSTG) [20]. There are several reasons as to 
why PSO is chosen as the basic platform of PSTG 
including faster convergence rate attitude, only a few 
parameters are required to be controlled, can be easily 
applied to any optimization problem and lighter 
computational load. PSTG only supports uniform 
strength up to six levels. Next, VS-PSTG was developed 
to improve PSTG by enhancing variable strength 
interaction [21].  
 Discrete Particle Swarm Optimization (DPSO) [10] 
is another algorithm based on PSO and uses discrete 
particle swarm as its basis. The algorithm was designed 
by adopting S-PSO that uses set-based scheme as its 
discrete search space. The new DPSO improves 
performance by having two auxiliary strategies; particle 
re-initialization and additional evaluation of gbest. It also 
offers guidelines for parameter settings. DPSO is 
reported to be a promising improvement of PSO. 
 The last algorithm motivated by PSO between 2010 
and 2017  is Swarm Intelligent Test Generator (SITG) 
[22]. SITG supports 2 to 6 levels of uniform strength and 
variable strength. SITG outperforms PSTG in some 
cases of uniform strength while exhibiting better results 
for variable strength.   
 As PSO is a metaheuristic algorithm, its entire 
variant follows a similar search technique. PSTG, V-
PSTG, DPSO, SITG and Pairwise PSO (OTAT) use 
OTAT strategy approach while only Pairwise PSO 
(OPAT) applies OPAT strategy.  
  In 2011, three algorithms or tools that apply 
computational search technique were introduced. 
GTWay [23] uses backtracking concept. The algorithm 
needs to map actual data with symbolic representation. 
Then, it generates possible interactions of t-way pair. 
Once this is done, the strategy backtracks the uncovered 
t-way pairs. The t-way pairs are merged if they are able 
to be combined, complement the missing value of each 
other and if the new merge interaction can cover the 
most uncovered t-way pairs. If the pairs fail to merge, 
the strategy backtracks to the first defined values. 
GTWay is an OTAT strategy that supports uniform 
strength for t greater than six.  

 Another algorithm or tool is ITTDG [17]. It forms a 
list of candidate test data to be used in deciding a final 
test data. A visited tuples is put into the candidate list. 
Next, parameters that have a value that cover the most 
uncovered tuples is added to the candidate test data, one 
parameter at a time. In a situation where a tie occurs, the 
corresponding test data that contains the tied values are 
duplicated and put into the candidate list. Next, the 
weight for every test data is calculated. Test data with 
the highest weight holds the value of the most covered 
tuples. If a tie happens, the first round in the candidate 
list will be selected to be put in the final test suite and 
subsequently removed from the uncovered tuples list. 
This process is repeated until all uncovered tuples are 
eventually covered. ITTDG is able to support all three 
types of interaction; uniform, variable and IOR. 
 Similar to ITTDG, AURA [24] has the same ability 
in supporting all types of interactions. AURA starts by 
exploiting the combination of interactions created earlier 
to generate test suite. Then, actual data mapping 
algorithm is used to support symbolic values and actual 
data output. 
 Only one type of algorithm was published in 2012, 
which was Harmony Search (HS). It is the basis for two 
other algorithms, Harmony Search Strategy (HSS) and 
HS-PTSGT. HS was inspired by a musician tuning their 
music.  
 Another algorithm that uses metaheuristic search 
technique to generate t-way test suite is Harmony Search 
Strategy (HSS). It is based on Harmony Search (HS) 
algorithm. Similar to PSO, HS algorithm requires 
minimal computation with only a few parameter settings. 
HSS [14] can support uniform and variable interaction 
strength with high interaction strength, up to 14 and 
constraints. Besides HSS, HS-PTSGT [9] is a pairwise 
generator tool that was developed based on HS 
algorithm. 
 In 2013, DA-RO and DA-FO [25] emerged. Both 
algorithms are computational techniques and support all 
types of interactions. DA-FO starts with an empty test 
case which contains unfixed factors. Local density for 
each factor is determined to obtain the order of coverage 
requirements. A coverage requirement with the highest 
local density is selected to be fixed based on global 
density. For each combination in the test case where the 
values of factors are fixed, DA-RO will calculate the 
global density. The combination with the greatest global 
density is selected to fix the value of factors.  

Unlike DA-RO, DA-FO algorithm produces a single 
test case by fixing values in order of factors. Priority 
numbers are defined to measure priority of different 
factors to determine the order of factors. Coverage 
requirements that hold high priorities and local densities 
will obtain a great factor density and will be chosen to 
fix the values. Similar to DA-RO, after fixing values, the 
local, global and factor densities may change due to re-
modification of densities. DA-FO also suffers from the 
problem of tied values.  

GVS [26] was the only algorithm published in 2014. 
This algorithm is inspired by GTWay. Similar to 
GTway, GVS is a computational technique and improves 

MATEC Web of Conferences 140, 01016 (2017)	 DOI: 10.1051/matecconf/201714001016
ICEESI 2017

3



 

the interaction by supporting all type of interactions. The 
algorithm chooses a don’t care value sequentially. It 
generates one tuple at a time before the repetition starts. 
Each tuple is assigned with a don’t care value to 
complete the test data. Next, GVS checks which test 
cases can cover the most uncovered tuples. The chosen 
test case is then placed in the final test suite and covered 
tuples are added in the covered tuples list. 

In 2015, TCA, Cuckoo Search (CS) and Flower 
Strategy (FS) were published. They are metaheuristic 
algorithms.  
 TCA [27] is an algorithm that combines greedy Tabu 
search and random walk heuristic. Greedy Tabu search is 
used during initialization of test cases. TCA applies 
heuristic search technique to expand opportunities in 
covering the uncovered interactions.  Through both 
techniques, the runtime for test suite generation is 
affected. Although TCA utilizes combination of search 
techniques, it still falls under the metaheuristic category 
because Tabu search is a metaheuristic algorithm. TCA 
supports 3-way constraint uniform strength. 
 Cuckoo Search [28] has been explored in t-way 
combinatorial testing as Cuckoo algorithm offers search 
capabilities using Levi flights [29] to update search 
space. It consists of a few parameters to be tuned [28]. 
Cuckoo Search supports uniform strength (up to three) 
and also variable strength. 
 Flower Strategy (FS) [30] evolved from the 
effectiveness of Flower Pollination Algorithm (FPA). 
FPA is a simple, flexible and requires light computation. 
It also strikes a balance between exploitation and 
exploration by employing levy flight. FS is a 
metaheuristic algorithm that supports uniform strength. 
 In 2016, hyper-heuristic strategy emerged. High 
Level Hyperheuristic (HHH) [31] is a pioneer in 
incorporating hyper-heuristic strategy in t-way 
combinatorial testing.  It consists of high level 
metaheuristic Tabu Search and other four low level 
metaheuristic algorithms (i.e. Teaching Learning based 
Optimization, Global Neighborhood Algorithm, Particle 
Swarm Optimization, and Cuckoo Search Algorithm). 
The algorithm uses metaheuristic search technique and 
support uniform strength from level 2 to 6. 
    There are two proposed t-way testing strategies 
found in the literature. Artificial Bee Colony (ABC) [32] 
is proposed to generate an optimum test suite. This 
strategy was inspired by a group of bees searching for 
nectar for their hive. ABC was chosen by researchers as 
it has proven to be a great strategy in the combinatorial 
field.  
 Another proposed strategy found in 2016 is Ant 
Colony System (ACS) [33]. ACS is a variant of the Ant 
Colony Optimization (ACO) algorithm. It has 
successfully solved many combinatorial optimization 
problems. Ant Colony Algorithm (ACA)[34] and ACS 
[5] were developed to generate an optimum test suite 
size to cater uniform and variable strength respectively. 
The proposed ACS strategy is envisioned to serve all 
types of interactions especially IOR.  
 Adaptive TLBO (ATLBO) [35]  is a metaheuristic t-
way testing that emerged from Teaching Learning-based 

optimization (TLBO) algorithm in the first quarter of 
2017. It is based on Mamdani fuzzy inference system. 
ATLBO is able to support uniform and variable strength. 
 
4 Analysis and Discussion 
This section will discuss the analysis from section 3, 
existing works and other related matters.  

4.1. Analysis of Algorithms and Tools   

20 algorithms or tools have been identified since 2010 
until 2017. Figure 2 presents the number of uniform, 
variable and IOR supported interactions by year. The 
number of algorithms or tools exhibited excludes ABC 
algorithm as no type of suitable interaction for the 
algorithm was reported. From the graph, it can be 
inferred that uniform strength is the most favourable type 
of interaction within the seven years. IOR comes in 
second, while variable strength is last by only a slight 
difference.  The number of algorithms and tools that 
support uniform and variable strength in 2015 is 
comparable. Six algorithms or tools were developed in 
2015, the highest among all the years. The algorithm or 
tool development was reported to be the lowest in 2012, 
2014 and 2017. However, as this report contains data as 
of the first quarter of 2017, it cannot be concluded that 
only one algorithm was produced in 2017. 

 

 
Fig. 2. Number of Uniform, Variable and IOR Supported 
Interaction by Year 
 

Among these algorithms, PSO is the most widely 
used within seven years. Five algorithms were developed 
based on PSO including Pairwise PSO, PSTG, VS-
PSTG, DPSO and SITG. PSO requires a smaller number 
of parameters to be tuned with a simple computational 
formula. PSO is still popular among researchers for this 
very reason. PSO has also proven to support uniform 
strength up to 6 levels and variable strength.   

4.2. Analysis of Strategy Approach   

There are two categories of strategy approach. From the 
literature, all 20 algorithms or tools developed employ 
OTAT strategy. Only PSO makes use of OPAT strategy. 
OTAT is more popular and favourable as a result of its 
ability to support higher configuration as opposed to 
OPAT. The latest trend in uniform strength is likely to 
offer higher strength such as HSS that supports 14 levels 
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of strength. Most of the latest uniform strength based 
algorithm can support up to 6 levels of strength. 

4.3. Analysis of Search Technique and 
Supported Interaction   

Table 2 presents algorithms or tools based on their 
search technique and supported interactions. Six of them 
apply computational search technique, while the 
remaining 14 algorithms or tools use metaheuristic 
search technique. The capability of metaheuristic in 
solving optimization problem is well-known as it is used 
in Search-Based Software Engineering (SBSE) [36]. 
This could possibly be one of the reasons many 
researchers are interested in studying the metaheuristic 
search technique.  

Among the three supported interactions, uniform 
strength is the most popular and the most widely used 
among researchers. In addition, algorithms and tools that 
support variable strength and IOR are also supporting 
uniform strength. This could be due to variable strength 
being an enhancement of uniform strength. While for the 
IOR, literature proves that IOR can support all types of 
interaction as mentioned by [18] and Table 2 shows that 
all six algorithms or tools supports both uniform and 
variable strength. The second most popular type of 
interaction is variable strength. 60% of the algorithms or 
tools support variable strength. Clearly, algorithms or 
tools that support IOR are the least developed type of 
interaction at only 30%.  Algorithms or tools that support 
IOR fall under computation category. They were 
published between 2011 till 2014. It is apparent from the 
table that none of the metaheuristic algorithms support 
IOR. However, ACS is proposed to support all types of 
interactions especially IOR. ABC algorithm is also 
suggested. However, types of supported interaction are 
not reported.  
 
Table 2. Summary of algorithms/tools 
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R √ √ 
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  √    :  Supported ,  x  :  Not Supported, NR :  Not reported 

5 Conclusion 
T-way combinatorial testing can be explored through 
various ways or categories such as strategy approach, 
search technique or supported interactions. In strategy 
approach, OTAT is the dominant strategy chosen by the 

algorithms or tools. OPAT strategy is selected only by 
PSO algorithms (i.e. OPAT PSO). Metaheuristic search 
technique is the most widely used search technique as 
compared to computational technique. 70% of 
algorithms or tools use metaheuristic search technique. 
Out of three types of interactions, all 20 algorithms or 
tools is able to support uniform strength. HSS holds up 
highest strength at level 14. The number of algorithms or 
tools that support variable strength reached a peak in 
2015 and this contributed to the highest number of 
algorithms or tools in that particular year.  58% of the 
algorithms or tools utilize metaheuristic search 
technique. In contrast to variable strength, only one 
proposed strategy that incorporates metaheuristic search 
technique is reported to support IOR (i.e. ACS).  
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