
* Corresponding author: rozmie@unimap.edu.my

A Review on Recent T-way Combinatorial Testing Strategy

Nuraminah Ramli , Rozmie Razif Othman*, Zahereel Ishwar Abdul Khalib and Muzammil Jusoh

School of Computer and Communication, University of Malaysia Perlis

Abstract. T-way combinatorial testing aims to generate a smaller test suite size. The purpose of t-way
combinatorial testing is to overcome exhaustive testing. Although many existing strategies have been
developed for t-way combinatorial testing, study in this area is encouraging as it falls under NP-hard
optimization problem. This paper focuses on the analysis of existing algorithms or tools for the past seven
years. Taxonomy of combinatorial testing is proposed to ease the analysis. 20 algorithms or tools were
analysed based on strategy approach, search technique, supported interaction and year published. 2015 was
the most active year in which researchers developed t-way algorithms or tools. OTAT strategy and
metaheuristic search technique are the most encouraging research areas for t-way combinatorial testing.
There is a slight difference in the type of interaction support. However, uniform strength is the most utilized
form of interaction from 2010 to the first quarter of 2017.

1 Introduction
Software application has become an integral part of our
daily lives due to its numerous benefits. One’s life can
turn complicated if software applications fail to perform
their tasks. Software failures can be prevented by
implementing software testing activities. Exhaustive
testing can be carried out to the software to ensure the
software is bug-free. However software testers will be
pushed to the limit if exhaustive testing is implemented.
Enormous number of test cases needs to be performed.
This situation is impossible to be exercised by software
tester [1-2]. An increase in the number of test cases
contributes to increased time of software development
and cost. Combinatorial software testing is a type of
testing technique to overcome the problem of exhaustive
testing which involves interaction of parameters. This is
because software failures are detected due to interaction
of few input parameters, or known as t-way testing,
where t is the interaction strength [1], [3-4].
 To construct t-way combinatorial testing, Covering
Array (CA) is used. It is the most active research in
combinatorial testing [4]. Covering array can be defined
as CA (N; t, k, v) where N represents the rows of the
array, t is the strength, k is the degree and v is the order
[3].

Many strategies and techniques have been
developed to cater to t-way combinatorial testing.
Optimization algorithm is supposed to assist in
generating smaller test suite size or near optimum
number of test cases. Generating the optimum number of
test cases is NP-hard problem [6]. This situation has
motivated many researchers in this area. Thus, it is the
aim of this paper to investigate the existing algorithms or
tools, current and potential knowledge related to t-way
combinatorial testing. In addition, this paper also

explores potential improvements in t-way testing. This
paper focuses on studies published on combinatorial
testing from 2010 to the first quarter of 2017. Published
papers from various types of available databases were
collected and analysed according to strategy approach,
search technique, supported interaction and the year
published.

This paper is organized as follows: In section 2,
Combinatorial Software Testing Taxonomy is presented.
Existing Algorithms and Tools are described in section 3
while analysis and discussion are highlighted in section
4. Lastly, section 5 delivers the conclusion.

2 Combinatorial Testing Taxonomy

Taxonomy of combinatorial software testing has been
developed based on studies done between 2010 and
2017. Figure 1 presents taxonomy of combinatorial
software testing. It can be divided into three main areas
namely strategy approach, search technique and
supported interaction.

Fig.1. Combinatorial Software Testing Taxonomy.

MATEC Web of Conferences 140, 01016 (2017)	 DOI: 10.1051/matecconf/201714001016
ICEESI 2017

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution
License 4.0 (http://creativecommons.org/licenses/by/4.0/).

2.1. Strategy Approach

Strategy approach can be categorized into two types of
strategies. The first strategy is one-test-at-a-time
(OTAT). OTAT strategies generate only one test case at
one time. Each test case generated must cover at least
one t-way combination or uncovered tuples. The best test
case generated is the one that covers the most t-way
combinations for all parameters. Once the test case is
selected, it will be added into a final test suite. This is
known as vertical extension. AETG [7] is the pioneer of
OTAT strategy.
 Another strategy is called one-parameter-at-a-time
(OPAT). This strategy starts with t parameter. It
produces test suites for t-wise combination. Next,
another parameter and a new test are added (horizontal
extension). During the horizontal extension, a new test
data might be incorporated into test suite to cover all the
uncovered t-wise combination. OPAT was popularized
by IPOG [8] and its families.

2.2. Search Technique

The two types of search techniques are computational
and metaheuristic. General computational approach is
based on interaction possibilities. It is able to support
very large configurations. The approach repeatedly
searches combinations in the searching space until all
combinations are covered. This is not practical and can
be costly if there are too many combinations [9]. General
computational approach is primarily uses greedy
technique. Greedy technique constructs test cases that
can cover as many uncovered combinations as possible.
This technique has been quite effective in generating test
cases. However, it is easily trapped in local optima [10].
 Metaheuristic search technique generates a small
number of rows in any type of covering arrays, support
constraints and prioritization [7-8]. This approach starts
with a random set of solutions. These solutions will
undergo a series of processes to find the best test case
using a fitness function. The process repeats until all
combinations of parameter input are covered.
Metaheuristic search technique has proven to produce an
optimum test suite size compared to computational
search technique. However, the limitation of
metaheuristic is that it requires more time for test suite
construction [9–11].

2.3. Supported Interactions

The type of interactions is also an important component
in constructing combinatorial testing. There are three
types of interactions to construct test cases namely
uniform strength, variable strength and Input Output
Based Relation (IOR).
 Uniform strength or t-wise combines values of
parameters with other parameters. The number of related
parameters is based on the t (i.e. strength). For example,
pair wise or 2-way testing involves combination of
values for every two parameters. Pairwise is widely used
by software testers. Research has found that faults are

detected by smaller interactions (i.e. t < 2). Nonetheless,
more research has been conducted and it is discovered
that more faults can be detected by interactions greater
than six [13]. The latest strategy has been developed to
support the coverage strength of 14 [14].
 Variable strength interaction testing is an extension
of uniform strength. To ensure that all parameter
combinations are covered at least once, software testers
need to run testing at a higher strength or at the highest
interaction level. Increasing the strength is unnecessary
because that requires using more resources to do
unimportant parameter combinations. In view of this
problem, variable strength is introduced. Different level
of strength can be set to different subset of parameters.
This case is applicable for any application or system that
needs to be run by multiple configurations [15].
 Another form of interaction is IOR. It involves
combinations of parameters that impact a particular
output. It caters for any combination of related parameter
inputs that affect certain output. IOR was initiated as not
every application or system has the same characteristics
and also to prevent redundancy of test cases or running
unnecessary test cases [16]. Through implementation of
IOR, both uniform and variable strength strategies are
also applied [17]. Uniform strength, variable strength
and IOR strategy are further explained in [18].

3 Existing Works
Many algorithms and tools have been explored to be
used in t-way combinatorial testing. In this section,
existing algorithms or tools developed from 2010 to
2017 are further examined. The existing algorithms and
tools are identified according to the year published or
their variant. Table 1 presents algorithms/tools published
by year.

Table 1 Algorithms/tools published by year
Year Algorithms / Tools

2010

Particle Swarm Optimization (PSO)
 Pairwise PSO (2010)
 Particle Swarm Test Generator (PSTG) (2010)
 VS-PSTG (2011)
 Discrete Particle Swarm Optimization (DPSO)

(2015)
 Swarm Intelligent Test Generator (SITG) (2015)

2011
 GTWay
 Integrated T-Way Test Data Generation (ITTDG)
 AURA

2012
Harmony Search
 Harmony Search Strategy (HSS)
 HS-PTSGT

2013
 DA-RO
 DA-FO

2014  General Variable Strength (GVS)

2015
 TCA
 Cuckoo Search (CS)
 Flower Strategy (FS)

2016  High Level Hyperheuristic (HHH)
 Artificial Bee Colony (ABC)
 Ant Colony System (ACS)

MATEC Web of Conferences 140, 01016 (2017)	 DOI: 10.1051/matecconf/201714001016
ICEESI 2017

2

2017  Adaptive Teaching Learning Based Optimization
(ATLBO)

 Particle Swarm Optimization (PSO) is an algorithm
for t-way combinatorial testing published in 2010. The
algorithm is inspired by animal swarms hunting for food.
Each individual in the swarm moves towards the best
individual location and the best global location based on
optimal solution that is calculated according to their
position and velocity [19]. A few algorithms or tools
have been developed based on PSO algorithm.
 The generation of PSO algorithm for t-way testing
starts with the development of pairwise PSO [19].
Researchers have developed two different algorithms
based on OTAT and OPAT strategies respectively.
 The utilization of PSO algorithm in previous research
has encouraged the development of Particle Swarm Test
Generator (PSTG) [20]. There are several reasons as to
why PSO is chosen as the basic platform of PSTG
including faster convergence rate attitude, only a few
parameters are required to be controlled, can be easily
applied to any optimization problem and lighter
computational load. PSTG only supports uniform
strength up to six levels. Next, VS-PSTG was developed
to improve PSTG by enhancing variable strength
interaction [21].
 Discrete Particle Swarm Optimization (DPSO) [10]
is another algorithm based on PSO and uses discrete
particle swarm as its basis. The algorithm was designed
by adopting S-PSO that uses set-based scheme as its
discrete search space. The new DPSO improves
performance by having two auxiliary strategies; particle
re-initialization and additional evaluation of gbest. It also
offers guidelines for parameter settings. DPSO is
reported to be a promising improvement of PSO.
 The last algorithm motivated by PSO between 2010
and 2017 is Swarm Intelligent Test Generator (SITG)
[22]. SITG supports 2 to 6 levels of uniform strength and
variable strength. SITG outperforms PSTG in some
cases of uniform strength while exhibiting better results
for variable strength.
 As PSO is a metaheuristic algorithm, its entire
variant follows a similar search technique. PSTG, V-
PSTG, DPSO, SITG and Pairwise PSO (OTAT) use
OTAT strategy approach while only Pairwise PSO
(OPAT) applies OPAT strategy.
 In 2011, three algorithms or tools that apply
computational search technique were introduced.
GTWay [23] uses backtracking concept. The algorithm
needs to map actual data with symbolic representation.
Then, it generates possible interactions of t-way pair.
Once this is done, the strategy backtracks the uncovered
t-way pairs. The t-way pairs are merged if they are able
to be combined, complement the missing value of each
other and if the new merge interaction can cover the
most uncovered t-way pairs. If the pairs fail to merge,
the strategy backtracks to the first defined values.
GTWay is an OTAT strategy that supports uniform
strength for t greater than six.

 Another algorithm or tool is ITTDG [17]. It forms a
list of candidate test data to be used in deciding a final
test data. A visited tuples is put into the candidate list.
Next, parameters that have a value that cover the most
uncovered tuples is added to the candidate test data, one
parameter at a time. In a situation where a tie occurs, the
corresponding test data that contains the tied values are
duplicated and put into the candidate list. Next, the
weight for every test data is calculated. Test data with
the highest weight holds the value of the most covered
tuples. If a tie happens, the first round in the candidate
list will be selected to be put in the final test suite and
subsequently removed from the uncovered tuples list.
This process is repeated until all uncovered tuples are
eventually covered. ITTDG is able to support all three
types of interaction; uniform, variable and IOR.
 Similar to ITTDG, AURA [24] has the same ability
in supporting all types of interactions. AURA starts by
exploiting the combination of interactions created earlier
to generate test suite. Then, actual data mapping
algorithm is used to support symbolic values and actual
data output.
 Only one type of algorithm was published in 2012,
which was Harmony Search (HS). It is the basis for two
other algorithms, Harmony Search Strategy (HSS) and
HS-PTSGT. HS was inspired by a musician tuning their
music.
 Another algorithm that uses metaheuristic search
technique to generate t-way test suite is Harmony Search
Strategy (HSS). It is based on Harmony Search (HS)
algorithm. Similar to PSO, HS algorithm requires
minimal computation with only a few parameter settings.
HSS [14] can support uniform and variable interaction
strength with high interaction strength, up to 14 and
constraints. Besides HSS, HS-PTSGT [9] is a pairwise
generator tool that was developed based on HS
algorithm.
 In 2013, DA-RO and DA-FO [25] emerged. Both
algorithms are computational techniques and support all
types of interactions. DA-FO starts with an empty test
case which contains unfixed factors. Local density for
each factor is determined to obtain the order of coverage
requirements. A coverage requirement with the highest
local density is selected to be fixed based on global
density. For each combination in the test case where the
values of factors are fixed, DA-RO will calculate the
global density. The combination with the greatest global
density is selected to fix the value of factors.

Unlike DA-RO, DA-FO algorithm produces a single
test case by fixing values in order of factors. Priority
numbers are defined to measure priority of different
factors to determine the order of factors. Coverage
requirements that hold high priorities and local densities
will obtain a great factor density and will be chosen to
fix the values. Similar to DA-RO, after fixing values, the
local, global and factor densities may change due to re-
modification of densities. DA-FO also suffers from the
problem of tied values.

GVS [26] was the only algorithm published in 2014.
This algorithm is inspired by GTWay. Similar to
GTway, GVS is a computational technique and improves

MATEC Web of Conferences 140, 01016 (2017)	 DOI: 10.1051/matecconf/201714001016
ICEESI 2017

3

the interaction by supporting all type of interactions. The
algorithm chooses a don’t care value sequentially. It
generates one tuple at a time before the repetition starts.
Each tuple is assigned with a don’t care value to
complete the test data. Next, GVS checks which test
cases can cover the most uncovered tuples. The chosen
test case is then placed in the final test suite and covered
tuples are added in the covered tuples list.

In 2015, TCA, Cuckoo Search (CS) and Flower
Strategy (FS) were published. They are metaheuristic
algorithms.
 TCA [27] is an algorithm that combines greedy Tabu
search and random walk heuristic. Greedy Tabu search is
used during initialization of test cases. TCA applies
heuristic search technique to expand opportunities in
covering the uncovered interactions. Through both
techniques, the runtime for test suite generation is
affected. Although TCA utilizes combination of search
techniques, it still falls under the metaheuristic category
because Tabu search is a metaheuristic algorithm. TCA
supports 3-way constraint uniform strength.
 Cuckoo Search [28] has been explored in t-way
combinatorial testing as Cuckoo algorithm offers search
capabilities using Levi flights [29] to update search
space. It consists of a few parameters to be tuned [28].
Cuckoo Search supports uniform strength (up to three)
and also variable strength.
 Flower Strategy (FS) [30] evolved from the
effectiveness of Flower Pollination Algorithm (FPA).
FPA is a simple, flexible and requires light computation.
It also strikes a balance between exploitation and
exploration by employing levy flight. FS is a
metaheuristic algorithm that supports uniform strength.
 In 2016, hyper-heuristic strategy emerged. High
Level Hyperheuristic (HHH) [31] is a pioneer in
incorporating hyper-heuristic strategy in t-way
combinatorial testing. It consists of high level
metaheuristic Tabu Search and other four low level
metaheuristic algorithms (i.e. Teaching Learning based
Optimization, Global Neighborhood Algorithm, Particle
Swarm Optimization, and Cuckoo Search Algorithm).
The algorithm uses metaheuristic search technique and
support uniform strength from level 2 to 6.
 There are two proposed t-way testing strategies
found in the literature. Artificial Bee Colony (ABC) [32]
is proposed to generate an optimum test suite. This
strategy was inspired by a group of bees searching for
nectar for their hive. ABC was chosen by researchers as
it has proven to be a great strategy in the combinatorial
field.
 Another proposed strategy found in 2016 is Ant
Colony System (ACS) [33]. ACS is a variant of the Ant
Colony Optimization (ACO) algorithm. It has
successfully solved many combinatorial optimization
problems. Ant Colony Algorithm (ACA)[34] and ACS
[5] were developed to generate an optimum test suite
size to cater uniform and variable strength respectively.
The proposed ACS strategy is envisioned to serve all
types of interactions especially IOR.
 Adaptive TLBO (ATLBO) [35] is a metaheuristic t-
way testing that emerged from Teaching Learning-based

optimization (TLBO) algorithm in the first quarter of
2017. It is based on Mamdani fuzzy inference system.
ATLBO is able to support uniform and variable strength.

4 Analysis and Discussion
This section will discuss the analysis from section 3,
existing works and other related matters.

4.1. Analysis of Algorithms and Tools

20 algorithms or tools have been identified since 2010
until 2017. Figure 2 presents the number of uniform,
variable and IOR supported interactions by year. The
number of algorithms or tools exhibited excludes ABC
algorithm as no type of suitable interaction for the
algorithm was reported. From the graph, it can be
inferred that uniform strength is the most favourable type
of interaction within the seven years. IOR comes in
second, while variable strength is last by only a slight
difference. The number of algorithms and tools that
support uniform and variable strength in 2015 is
comparable. Six algorithms or tools were developed in
2015, the highest among all the years. The algorithm or
tool development was reported to be the lowest in 2012,
2014 and 2017. However, as this report contains data as
of the first quarter of 2017, it cannot be concluded that
only one algorithm was produced in 2017.

Fig. 2. Number of Uniform, Variable and IOR Supported
Interaction by Year

Among these algorithms, PSO is the most widely
used within seven years. Five algorithms were developed
based on PSO including Pairwise PSO, PSTG, VS-
PSTG, DPSO and SITG. PSO requires a smaller number
of parameters to be tuned with a simple computational
formula. PSO is still popular among researchers for this
very reason. PSO has also proven to support uniform
strength up to 6 levels and variable strength.

4.2. Analysis of Strategy Approach

There are two categories of strategy approach. From the
literature, all 20 algorithms or tools developed employ
OTAT strategy. Only PSO makes use of OPAT strategy.
OTAT is more popular and favourable as a result of its
ability to support higher configuration as opposed to
OPAT. The latest trend in uniform strength is likely to
offer higher strength such as HSS that supports 14 levels

MATEC Web of Conferences 140, 01016 (2017)	 DOI: 10.1051/matecconf/201714001016
ICEESI 2017

4

of strength. Most of the latest uniform strength based
algorithm can support up to 6 levels of strength.

4.3. Analysis of Search Technique and
Supported Interaction

Table 2 presents algorithms or tools based on their
search technique and supported interactions. Six of them
apply computational search technique, while the
remaining 14 algorithms or tools use metaheuristic
search technique. The capability of metaheuristic in
solving optimization problem is well-known as it is used
in Search-Based Software Engineering (SBSE) [36].
This could possibly be one of the reasons many
researchers are interested in studying the metaheuristic
search technique.

Among the three supported interactions, uniform
strength is the most popular and the most widely used
among researchers. In addition, algorithms and tools that
support variable strength and IOR are also supporting
uniform strength. This could be due to variable strength
being an enhancement of uniform strength. While for the
IOR, literature proves that IOR can support all types of
interaction as mentioned by [18] and Table 2 shows that
all six algorithms or tools supports both uniform and
variable strength. The second most popular type of
interaction is variable strength. 60% of the algorithms or
tools support variable strength. Clearly, algorithms or
tools that support IOR are the least developed type of
interaction at only 30%. Algorithms or tools that support
IOR fall under computation category. They were
published between 2011 till 2014. It is apparent from the
table that none of the metaheuristic algorithms support
IOR. However, ACS is proposed to support all types of
interactions especially IOR. ABC algorithm is also
suggested. However, types of supported interaction are
not reported.

Table 2. Summary of algorithms/tools

Computational Metaheuristic

G
V

S

G
TW

ay

IT
TD

G

A
U

RA

D
A

-R
O

D
A

-F
O

H
H

H

TC
A

CS

PS
O

PS
TG

V
S-

PS
TG

D
PS

O

H
SS

H
S-

PT
SG

T

FS

SI
TG

A
BC

A
CS

A
TL

BO

Su
pp

or
te

d
In

te
ra

ct
io

n
(s

tre
ng

th
)

U
ni

fo
rm

√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ N
R √ √

V
ar

ia
bl

e

√ x √ √ √ √ x x √ x x √ √ √ x x √ N
R √ √

IO
R √ x √ √ √ √ x x x x x x x x x x x N
R √ x

 √ : Supported , x : Not Supported, NR : Not reported

5 Conclusion
T-way combinatorial testing can be explored through
various ways or categories such as strategy approach,
search technique or supported interactions. In strategy
approach, OTAT is the dominant strategy chosen by the

algorithms or tools. OPAT strategy is selected only by
PSO algorithms (i.e. OPAT PSO). Metaheuristic search
technique is the most widely used search technique as
compared to computational technique. 70% of
algorithms or tools use metaheuristic search technique.
Out of three types of interactions, all 20 algorithms or
tools is able to support uniform strength. HSS holds up
highest strength at level 14. The number of algorithms or
tools that support variable strength reached a peak in
2015 and this contributed to the highest number of
algorithms or tools in that particular year. 58% of the
algorithms or tools utilize metaheuristic search
technique. In contrast to variable strength, only one
proposed strategy that incorporates metaheuristic search
technique is reported to support IOR (i.e. ACS).

References
[1] R. C. Bryce, Y. Lei, D. R. Kuhn, and R. N.

Kacker, “Combinatorial Testing,” Handb. Res.
Softw. Eng. Product. Technol. Implic.
Glob.,196–208 (2010).

[2] M. I. Younis, K. Z. Zamli, and R. R. Othman,
“Effectiveness of the Cumulative vs . Normal
Mode of Operation for Combinatorial Testing,”
in IEEE Symposium on Industrial Electronics
and Applications (ISIEA 2010), 350–354 (2010).

[3] R. Kuhn, R. Kacker, Y. Lei, and J. Hunter,
“Combinatorial Software Testing,” Computers,
42, 8, 94–96, (2009).

[4] C. Nie and H. Leung, “A survey of
combinatorial testing,” ACM Comput. Surv., 43,
2, 1–29 (2011).

[5] X. Chen, Q. Gu, A. Li, and D. Chen, “Variable
strength interaction testing with an ant colony
system approach,” in Asia-Pacific Softw. Eng.
Conf. APSEC, 160–167 (2009).

[6] M. Rahman, R. R. Othman, R. B. Ahmad, and
M. Rahman, “Event Driven Input Sequence T-
way Test Strategy Using Simulated Annealing,”
in Fifth Int. Conf. on Intelligent Systems,
Modelling and Simulation, 663–667 (2014).

[7] D. M. Cohen, S. R. Dalal, M. L. Fredman, and
G. C. Patton, “The AETG system: an approach
to testing based on combinatorial design,” IEEE
Trans. Softw. Eng., 23,7, 437–444 (1997).

[8] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J.
Lawrence, “IPOG: A general strategy for T-way
software testing,” in Proceedings of the Int.
Symp and Workshop on Eng. of Comp. Based
Systems, 549–556 (2007).

[9] L. Y. Xiang, A. A. Alsewari, and K. Z. Zamli,
“Pairwise Test Suite Generator Tool Based On
Harmony Search Algorithm (HS-PTSGT),”
NNGT Int. J. Artif. Intell.,2, 62–65 (2015).

[10] H. Wu, C. Nie, F. Kuo, H. Leung, and C. J.
Colbourn, “A Discrete Particle Swarm
Optimization for Covering Array Generation,”
IEEE Trans. Evol. Comput.,19,4,575–591,
(2015).

[11] J. Torres-jimenez, C. V. Tamps, and C. V.

MATEC Web of Conferences 140, 01016 (2017)	 DOI: 10.1051/matecconf/201714001016
ICEESI 2017

5

Tamps, “Survey of Covering Arrays,” in 15th
Int. Symp. on Symbolic and Numeric Algorithms
for Scientific Computing, 20–27 (2013).

[12] M. Rahman, R. R. Othman, R. B. Ahmad, and
M. Rahman, “A Meta Heuristic Search based T-
way Event Driven Input Sequence Test Case
Generator,” Int. J. Simul. Syst. Sci. Technol., 15,
3, 65–71(2014).

[13] R. Kuhn, Y. Lei, and R. Kacker, “Practical
Combinatorial Testing : Beyond Pairwise,” IEEE
IT Professional,10, 3,19–23 (2008).

[14] A. R. A. Alsewari and K. Z. Zamli, “Design and
implementation of a harmony-search-based
variable-strength t -way testing strategy with
constraints support,” Inf. Softw. Technol., 54, 6,
553–568 (2012).

[15] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, C.
J. Colbourn, and J. S. Collofello, “A variable
strength interaction testing of components,” in
27th Annual Int. Comp. Software and
Applications Conf. (2003).

[16] P. J. Schroeder and B. Korel, “Black-box test
reduction using input-output analysis,” ACM
SIGSOFT Softw. Eng. Notes, 25, 5,173–177,
(2000).

[17] R. R. Othman and K. Z. Zamli, “ITTDG :
Integrated T-way test data generation strategy
for interaction testing,” Sci. Res. Essays, 6,17,
3638–3648 (2011).

[18] R. Othman and K. Zamli, “T-Way Strategies and
Its Applications for Combinatorial Testing,” Int.
J. New Comput. Archit. Their Appl., 1,2,459–
473 (2011).

[19] X. Chen, Q. Gu, J. Qi, and D. Chen, “Applying
particle swarm optimization to pairwise testing,”
in IEEE 34th Annual Computer Software and
Applications Conference, 107–116 (2010).

[20] B. S. Ahmed and K. Z. Zamli, “PSTG : A T-Way
Strategy Adopting Particle Swarm
Optimization,” in 2010 Fourth Asia
International Conference on
Mathematical/Analytical Modelling and
Computer Simulation, 1–5 (2010).

[21] B. S. Ahmed and K. Z. Zamli, “A variable
strength interaction test suites generation
strategy using Particle Swarm Optimization,” J.
Syst. Softw., vol. 84, pp. 2171–2185, 2011.

[22] K. Rabbi, Q. Mamun, and R. Islam, “An
Efficient Particle Swarm Intelligence Based
Strategy to Generate Optimum Test Data in T-
way Testing,” in IEEE 10th Conf. on Industrial
Electronics and App. (ICIEA), 123–128 (2015).

[23] K. Z. Zamli, M. F. J. Klaib, M. I. Younis, N.
Ashidi, M. Isa, and R. Abdullah, “Design and
implementation of a t-way test data generation
strategy with automated execution tool support,”
Inf. Sci. (Ny)., 181,9, 1741–1758 (2011).

[24] H. Y. Ong and K. Z. Zamli, “Development of
interaction test suite generation strategy with
input-output mapping supports,” Sci. Res.
Essays, 6,16, 3418–3430 (2011).

[25] Z. Wang and H. He, “Generating Variable

Strength Covering Array for Combinatorial
Software Testing with Greedy Strategy,” J.
Softw., 8,12, 3173–3181 (2013).

[26] R. R. Othman, N. Khamis, and K. Z. Zamli,
“Variable Strength t-way Test Suite Generator
with Constraints Support,” Malaysian J. Comput.
Sci.,27, 3, 204–217 (2014).

[27] J. Lin, C. Luo, S. Cai, K. Su, D. Hao, and L.
Zhang, “TCA : An Efficient Two-Mode Meta-
Heuristic Algorithm for Combinatorial Test
Generation,” in 30th IEEE/ACM International
Conference on Automated Software Engineering
494–505 (2015).

[28] B. S. Ahmed, T. S. Abdulsamad, and M. Y.
Potrus, “Achievement of minimized
combinatorial test suite for configuration-aware
software functional testing using the Cuckoo
Search algorithm,” Inf. Softw. Technol., 66,13–
29 (2015).

[29] X. S. Yang and S. Deb, “Cuckoo search via Levy
flights,” in World Congress on Nature and
Biologically Inspired Computing,210–214
(2009).

[30] A. B. Nasser, Y. A. Sariera, A. A. Alsewari, and
K. Z. Zamli, “Assessing Optimization Based
Strategies for t-way Test Suite Generation : The
Case for Flower-based Strategy,” in IEEE Int.
Conf. on Control System, Computing and Eng,
150–155 (2015).

[31] K. Z. Zamli, B. Y. Alkazemi, and G. Kendall, “A
Tabu Search hyper-heuristic strategy for t-way
test suite generation,” Appl. Soft Comput. J.,44,
57–74 (2016).

[32] M. Shaiful, A. Rashid, R. R. Othman, Z. R.
Yahya, M. Zamri, and Z. Ahmad,
“Implementation of Artificial Bee Colony
Algorithm for T-way Testing,” in 3rd Int. Conf.
on Electronic Design (ICED), 591–594 (2016).

[33] N. Ramli, R. R. Othman, M. Shaiful, and A.
Rashid, “Optimizing Combinatorial Input-
Output Based Relations Testing using Ant
Colony Algorithm,” in 3rd Int. Conf. on
Electronic Design (ICED), 586–590 (2016)

[34] T. Shiba, T. Tsuchiya, and T. Kikuno, “Using
artificial life techniques to generate test cases for
combinatorial testing,” in Proceedings of the
28th Annual Int. Comp. Soft. and App. Conf,
(2004).

[35] K. Z. Zamli, F. Din, S. Baharom, and B. S.
Ahmed, “Engineering Applications of Arti fi cial
Intelligence Fuzzy adaptive teaching learning-
based optimization strategy for the problem of
generating mixed strength t -way test suites,”
Eng. Appl. Artif. Intell., 59, 35–50 (2017).

[36] M. Harman, Y. Jia, J. Krinke, W. B. Langdon, J.
Petke, and Y. Zhang, “Search based software
engineering for software product line
engineering : a survey and directions for future
work,” in 15th Soft. Product Line Conference, 5–
18 (2014)

MATEC Web of Conferences 140, 01016 (2017)	 DOI: 10.1051/matecconf/201714001016
ICEESI 2017

6

