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Abstract. Nowadays, there are various of optimisation methods that have 
been explored by many researchers to find the appropriate processing 
parameters setting for the injection moulding process. From the previous 
researches, it was reported that the optimisation work has improved the 
moulded part quality. In this study, the application of optimisation work to 
improve warpage of the front panel housing have been explored. By 
selecting cooling time, coolant temperature, packing pressure and melt 
temperature as the variable parameters, design of experiment (DOE) have 
been constructed by using the rotatable central composite design (CCD) 
approach. Response Surface Methodology (RSM) was performed to obtain 
the mathematical model. This mathematical model then will be used in 
Glowworm Swarm Optimisation (GSO) method in order to determine the 
optimal processing parameters setting which will optimise the warpage 
condition. Based on the results, melt temperature is the most significant 
factor contribute to the warpage condition and warpage have optimised by 
39.1% after optimisation. The finding shows that the application of 
optimisation work offers the best quality of moulded part produced. 

1 Introduction 
Injection moulding process consists into four main stages which are filling, packing, cooling 
and ejecting processes [1, 2]. Due to the complexity of injection moulding process, it is 
difficult for injection moulding industries in order to produce the best quality of the moulded  
part. Most common defects in injection moulding is a warpage [3]. Warpage is difficult to 
prevent due to design complexity and numerous influencing factors which affected the 
assembly process because of uneven clearance or interference problems. With an appropriate 
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setting of injection moulding processing parameters, warpage condition can be reduced [4].
Previously, most of injection moulding industries have used try-and-error approach in order 
to obtain an appropriate processing parameters setting which consume time and production 
cost [5]. Today with the advancement of computer technology, an appropriate combination 
of processing parameters can be obtained by simulation analysis software with an aid of 
optimisation approach which is highly accurate, shorter time, and much more cheaper [3].
These days, many researchers come with various proposals of optimisation approaches to 
determine an optimal processing parameters in order to optimise the quality of injection 
moulded parts. 

For instances, Annicchiarico et al. [6], proposed the half fractional factorial design of 
experiment optimisation method to investigate the processing parameter influence on the 
shrinkage in order to improve part quality. Squared specimen made from polyoxymethylene 
(POM) was used in this research. The preliminary screening was performed to identify high 
and low values for each selected parameter. Then, the significant factors have determined by 
conducting statistical analysis. The result shown that mould temperature are the most critical 
factor influenced the shrinkage for parallel and normal flow direction. 

Yin et al. [7], explored Taguchi's method with multi-objectives optimisation approach to 
find an optimal processing parameters in order to reduce warpage and birefringence. An 
optical lens made of PMMA material was used in this research. At first, Taguchi's orthogonal 
array with three level was created to evaluate the initial process condition. S/N ratio was 
calculated and analysis of mean (ANOM) was performed as a multi-objectives optimisation 
approach in order to obtain an optimal processing parameter setting and to determine the 
most critical factor to warpage and birefringence. Experimental verification was conducted 
in this research by using optimal processing parameters that obtained from the optimisation 
work. The results show that the birefringence and warpage have reduced, which were smaller 
than minimal value obtained from the Taguchi's method. Melt temperature was found as the 
most significant factor to give effect to both warpage and birefringence. 

Chen et al. [8], explored the optimisation work using Taguchi method, response surface 
methodology (RSM) and hybrid of genetic algorithm-particle swarm optimisation (GA-PSO) 
in order to find an optimum length and to reduce warpage. In this research, printer rear cover 
was used as specimen which made from PBT-2100 material. At first, Taguchi's method was 
conducted to investigate the initial processing parameters. By implementing ANOVA, the 
significant factors have been determined which are packing time and cooling time. Next, the 
RSM was conducted to generate mathematical models and the combination of RSM-GA was 
performed to determine an optimal processing parameters. This first stage optimal processing 
parameters will be optimised again by using hybrid GA-PSO method. The results of the 
second stage optimisation show that the optimum length achieved was 170.483mm which 
was claimed to be the closest target value (170.5mm) and warpage was reduced from 0.092 to 
0.025mm. 

In other research, Chen et al. [9], proposed the sequence of optimisation methods which 
consist of Taguchi's method, back-propagation neural network (BPNN), genetic algorithm 
(GA) and hybrid particle swarm optimisation and genetic algorithm (PSO-GA) to get an 
optimum length and to reduce warpage. The same printer rear cover made from PBT-2100 
material was used as research specimens. For initial, Taguchi's method was performed to 
obtain the best combination of processing parameters. Next, ANOVA was carried out to 
identify the significant factors contributed to the responses and the result are the packing time 
and cooling time. Afterward, BPNN was conducted to plot the relationship between variables 
and responses. Then, the first stage optimisation was employed by using GA to obtain the 
initial optimal processing parameters. Next, the second stage optimisation which used hybrid 
PSO-GA approach to determine an optimal processing parameters setting was performed. 
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The results show that the optimal length achieve was 170.52mm from the target length which 
was 170.5mm and warpage was reduced from 0.198mm to 0.096mm. 

Based on the literatures, moulded part qualities can be enhanced by the application of 
optimisation work. Therefore, in this study an alternative optimisation approach has been 
introduced to improve warpage on front panel housing part made of Acrylonitrile-Butadiene 
-Styrene (ABS). Based on input processing parameters design of experiment (DOE) will be 
generated by using full factorial Design (FFD) with an aid of rotatable central composite 
design of experiment (CCD). Then AMI 2013 software will be used to analyse warpage 
condition for each run. Response surface methodology (RSM) will be performed in order to 
obtain the mathematical model function and analysis of variance (ANOVA) will be used to 
define the  significant factors influencing on the warpage condition. The mathematical model
obtained from RSM will be used in glowworm swarm optimisation (GSO) method as an 
objective function to determine the optimal processing parameters which will optimise 
warpage of the moulded part. 

2 Response surface methodology 
Response surface methodology (RSM) is a classical optimisation approach. It was used to 
demonstrate the relationship between variable parameters which influence the response 
condition in two or three-dimensional hyperbolic surface[10]. The mathematical model 
function will be obtained by using the second-order polynomial regression model in this 
study which will be used as the objective function in GSO. The necessary information to 
construct the response model are generally accumulated by the simulation works [11, 12].
Figure 1 shows the RSM flowchart in this study. 

Fig. 1. Response Surface Methodology (RSM) flowchart 
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2.1  Design of Experiment Setup 

In this study, coolant inlet temperature, melting temperature, packing pressure and cooling 
time have been selected as variable parameters and the range of each parameter as shown in 
Table 1. At first, full factorial design (FFD) with four centre points was selected as an 
experimental design to evaluate the model and main effects contribute to the warpage 
condition by using Design Expert 7.0 software. In order to obtain the significant curvature 
which is important in the RSM regression analysis, the augment of rotatable central 
composite design (CCD) was performed. Therefore, 30 runs of specified condition have been 
generated and each run will be set in AMI 2013 simulation software to evaluate the warpage 
condition of the moulded part. 

Table 1. Variable parameters and levels 

Factors
Level

Minimum Maximum

Coolant inlet temperature, A (°C) 25 65
Melt temperature, B (°C) 220 260

Packing pressure, C (MPa) 46.74 56.74
Cooling time, D (s) 20 35

2.2  Finite element analysis setup 

The CAE software, Autodesk Moldflow Insight (AMI) 2013 have been used to simulate the 
injection moulding process and to evaluate the warpage condition of front panel housing 
moulded part which has 2.5mm of average thickness and made from ABS material with trade 
name as Toray/Toyolac 700-314 as shown in Fig. 2. The moulded part, gating system and 
cooling channels 3D data was created and imported into the software for meshing process. In 
order to obtain more precise results, the mould insert material made of P20 steel and Nissei 
NEX1000, 80 tonne injection moulding machine specification have been set in the AMI 
software. Then, the Cool (FEM)+Fill+Pack+Warp analysis has been performed to evaluate 
warpage condition for each run which have been generated by DOE. 

  

Fig. 2. Front panel housing with straight drilled cooling channels 
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2.3  RSM Regression Analysis 

The warpage results for each run which obtained from the simulation analysis will be used in 
the RSM regression analysis.  By using Design Expert 7.0 software the regression analysis 
was performed with the backward quadratic model in order to obtain the mathematical model 
function which representing the relationship between variable parameters and response. The 
software will calculate using second-order polynomial regression model in a statistical 
manner and the results will be verified with ANOVA. 

2.4  Analysis of Variance (ANOVA) 

The result of the quadratic model obtained from the RSM regression analysis will be verified 
by analysis of variance (ANOVA) to determine either the mathematical model was 
statistically significant or otherwise. In the same manner, the significant factors that 
contribute to the warpage condition will be defined. 

3 Glowworm swarm optimisation 
The operators in GSO are recognised as glowworms [13] that carry a luminescent amount 
which has been called as luciferin [14]. Every glowworm utilises an artificial proportional 
luciferin to transmit the fitness of its current location and evaluate based on the objective 
model function to its neighbours. The glowworms rely on the variable of their neighbourhood 
which is based on the radial sensor range boundary in order to identify their neighbours and 
evaluate their movements. Each glowworm using the probabilistic mechanism by selecting a 
neighbour that contain the higher luciferin amount than its own and moves toward it. In other 
words, it will be attracted to the neighbours which are glowing brighter. Finally, the 
movement of the glowworms will be based on the local information and particular neighbour 
interactions which empower the majority swarm to form multiple optima of a given 
multimodal function. 

In this study, GSO method will be carried out to obtain the optimised processing 
parameters of injection moulding process based RSM mathematical model function. 
MATLAB R2014a software will be used to conduct GSO analysis. Figure 3 shows the 
flowchart of GSO for this study. 

3.1  Defining mathematical model function 

The objective function used in GSO is the mathematical model function which has been 
obtained from the RSM regression analysis. The formulated objective function has been 
taken in this study is a warpage function. 

3.2  Initialisation of glowworms' parameters 

The initial glowworms' parameters were set based on the selected injection moulding 
variable parameters limit in this study to create the solution space. Then, the GSO agents will 
be deployed randomly in the solution space by setting the initial glowworms population size 
and maximum iteration based on the research requirement. In this study 30 numbers of 
glowworms and 40 iterations have been set. 

        
 

DOI: 10.1051/,97MATEC Web of Conferences matecconf/201
 ETIC 2016

01105 (2017) 79701105

5



Fig. 3. Flowchart of Glowworm Swarm Optimisation (GSO) 

3.3  Initialisation glowworms' solution 

The initial solution of initial luciferin value (��), luciferin decay constant (�), luciferin 
enhancement constant (�), beta (�), step size (�), neighbourhood range �	
 (�) and parameter 
used to control the number of neighbours (�
) was set based on the research requirement 
where each glowworm contained the same luciferin value and sensor range in this phase. In 
this study, GSO control parameters optimal setting are: � = 0.08, � = 0.4, � = 0.6  and 
�	
 (�) = 3. 

3.4  Update glowworms' luciferin value 

At the beginning, each glowworm contains the same luciferin value. Influenced by the 
objective function value of their current location, the luciferin value will be changed. The 
rule of luciferin update was given by standard Equation (1) where ��(�) is the luciferin level 
for glowworm � at time �, � is the luciferin decay constant (0 < � < 1), and ��(�) indicates 
the objective function at agent �'s location at time �. 

   ��(� + 1) = (1 − �)��(�) + ���(� + 1)                                       (1)    
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3.5 Update glowworms' movement 

In the movement-update phase, each glowworm will move toward neighbour that contained 
the higher luciferin value than its own using a probabilistic mechanism. The probability of 
agent � move to agent � was given by a standard Equation (2) where �
(�) is the luciferin
value for glowworm �, �(�, �) is the Euclidean distance between agent i and j. 

�
�(�) = ��(
)���(
)
∑ ��(
)���(
)�∈��(�)

                                                         (2) 

Then, the glowworm i movement can be expressed by Equation (3) where s is the step size. 

�
(� + 1) = �
(�) + � � ��(
)���(
)
!��(
)���(
)!"                                               (3) 

3.6  Update glowworms' local decisions range 

Local decision range update phase will be used to determine multiple peaks in a multimodal 
functional landscape in order to obtain the optimal variable parameters which optimise 
warpage value effectively. When the number of neighbours changed, the local decision 
domain needs to update in each of  iteration. The rule is given by Equation (4) where 
�	
 (� + 1)  is the local decision domain of glowworm �  in the � + 1  iteration, � is the 
constant parameter that affected the rate of change of the neighbour domain and �
 is the 
threshold used to control the number of neighbours. 

�	
 (� + 1) = min {�#, max $0, �	
 (�) + �(�
 − |%
(�)|)}&                        (4) 

4 Results and discussions 

4.1  Injection moulding process simulation 

Warpage value obtained from simulation analysis was shown in Table 2. The results tabulate 
the warpage value for each run with the specified variable parameters condition which 
obtained from the DOE. The specified variable parameters condition was set and simulated in 
the AMI 2013 software. 

4.2  Response surface methodology (RSM) regression analysis  

From regression analysis, the determination coefficient, R2 that fitted the model is 0.9710. 
The adjusted determination is 0.9618, which indicated that the regression model is significant 
with an adequate precision is more than 4, which is 37.564. The model is more significant if 
R2 value is closer to 1 [15]. The standard deviation for this model is 8.807×10-3 and this 
value indicated that it is relatively lower than 0.05 which is better for precision and reliability 
of the experiment [16]. The polynomial regression model which relates to the warpage with 
all input parameters (coolant inlet temperature (A), melt temperature (B), packing pressure 
(C) and cooling time (D) is established by Design Expert 7 software and represented in 
Equation 5. This mathematical model function will be used in GSO as an objective function. 

'*�-*/2 = −0.251 + (3.43 × 10�9:) + (2.212 × 10�9;) + (7.917 × 10�@A)          
  −(2.806 × 10�9B) − (1.328 × 10�C:;) − (1.832 × 10�CBD)          (5)
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Table 2. Injection moulding process simulation results. 

Standard 
Order

Data 
Source

Variable parameters for injection moulding simulation Response
Coolant 

temperature 
(°C)

Melt 
temperature 

(°C)

Packing 
Pressure 
(MPa)

Cooling 
time (s)

Warpage 
(mm)

1

DOE

25 220 46.74 20 0.220
2 65 220 46.74 20 0.155
3 25 260 46.74 20 0.305
4 65 260 46.74 20 0.225
5 25 220 56.74 20 0.215
6 65 220 56.74 20 0.170
7 25 260 56.74 20 0.310
8 65 260 56.74 20 0.235
9 25 220 46.74 35 0.175

10 65 220 46.74 35 0.130
11 25 260 46.74 35 0.255
12 65 260 46.74 35 0.185
13 25 220 56.74 35 0.175
14 65 220 56.74 35 0.135
15 25 260 56.74 35 0.245
16 65 260 56.74 35 0.190
17

Centre

45 240 51.74 27.5 0.215
18 45 240 51.74 27.5 0.215
19 45 240 51.74 27.5 0.215
20 45 240 51.74 27.5 0.215
21

Axial

5 240 51.74 27.5 0.240
22 85 240 51.74 27.5 0.140
23 45 200 51.74 27.5 0.170
24 45 280 51.74 27.5 0.270
25 45 240 41.74 27.5 0.205
26 45 240 61.74 27.5 0.240
27 45 240 51.74 12.5 0.260
28 45 240 51.74 42.5 0.180
29 45 240 51.74 27.5 0.215
30 45 240 51.74 27.5 0.215

4.3  Analysis of variance (ANOVA) 

From the ANOVA table as shown in Table 3, the F calculated value is bigger than F 
tabulated. This condition shows that the mathematical model obtained from regression 
analysis was significant. The ANOVA also indicated that three from four selected variable 
parameters give significant effect on the warpage condition.  

Table 3. ANOVA of response surface model. 

Sum of 
Squares df Mean 

Square
F

(calculated) R² RA² F
(tabulated)

SSR 0.0571 7 0.0082 105.2280 0.9710 0.9618 2.46

SSE 0.0017 22 0.0001

Total 0.0588 29

The results show that melt temperature was the most significant factor contributed to the 
warpage condition. This result was inline with previous researchers which found out the 
same significant factor which influencing the warpage condition [7, 17-21].  Then it follows 
by cooling temperature and cooling time. Packing pressure was the least significant factor 
contributed to the warpage condition as shown in Figure 4. This result shows the uneven 
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volumetric shrinkage occurred to the poor uniformity of thermal distribution in the mould 
[22]. According to Subramanian et al. [23] and Huang et al. [24] the temperature difference 
between upper and lower surfaces in the cavity and core can give effect to the shrinkage 
condition. This behaviour will cause either warpage or residual stress, depending on the 
mechanical stiffness of the moulded part design.  
  

Fig. 4.Contribution for each parameters in percentage. 

Equation 5 was applied to calculate the prediction warpage values of the polynomial 
model and the results is summarised in Figure 5. From the comparison, it shows that the 
simulation and predicted value are very close to each other which indicated the mathematical 
response function have given a good prediction value in estimating warpage. 

Fig. 5. Simulation and predicted warpage comparison 
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4.4  Glowworm swarm optimisation (GSO) analysis 

The GSO algorithm has been conducted on injection moulding processing parameters. The 
algorithm was tested on four selected variable parameters. By using the mathematical model 
function obtained from RSM, the optimal results were shown in Table 4 and the warpage 
variation for each glowworm was shown in Figure 6. 

Table 4. Recommended simulation results versus GSO Optimised results  

Factors
Recommended 

simulation 
results

GSO optimised 
results

Coolant inlet temperature, A (°C) 25 64.27

Melt temperature, B (°C) 240 232.51

Packing pressure, C (MPa) 46.74 52.01

Cooling time, D (s) 30 31.77

Warpage, (mm) 0.2650 0.1614

Fig. 6. Warpage variation for each glowworm 

5 Conclusion 
This study is definitely helpful in enhancing the quality of moulded parts produced where the 
objective is to optimise warpage of the front panel housing moulded part have been achieved. 
Based on the results, the warpage has been optimised by using an alternative approach of 
response surface methodology (RSM) and Glowworm Swarm Optimisation (GSO). The 
results also show that: 

� By using RSM, the significant mathematical model function can be obtained in 
order to predict warpage value with reasonable accuracy. 
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� From the ANOVA results, melt temperature is the most significant factor 
influencing the warpage condition on the moulded part, follow by coolant 
temperature and cooling time.  

� The optimal processing parameter obtained from GSO has optimised warpage by 
39.1% which is from 0.2650mm from the simulation result to 0.1614mm. 

In this study, it proved that the proposed optimisation approach has enormous potential in 
order to obtain better quality of the moulded part. 
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