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    Abstract- This paper contains the study about vibration 
analysis for gearbox casing using Finite Element Analysis (FEA).  
The aim of this paper is to apply ANSYS software to determine 
the natural vibration modes and forced harmonic frequency 
response for gearbox casing. The important elements in vibration 
analysis are the modeling of the bolted connections between the 
upper and lower casing and the modeling of the fixture to the 
support. This analysis is to find the natural frequency and 
harmonic frequency response of gearbox casing in order to 
prevent resonance for gearbox casing. From the result, this 
analysis can show the range of the frequency that is suitable for 
gearbox casing which can prevent maximum amplitude.  
 

I. INTRODUCTION 
 
  Gearbox casing is the shell (metal casing) in which a train of 
gears is sealed.From the movement of the gear it will produce 
the vibration to the gearbox casing. 
  

  
Figure 1. A gearbox casing 

  Reference [4] show that the study of natural frequency, 
consider a beam fixed at one end and having a mass attached 
to the other, this would be a single degree of freedom (SDoF) 
oscillator. Once set into motion it will oscillate at its natural 
frequency. For a single degree of freedom oscillator, a system 

in which the motion can be described by a single coordinate, 
the natural frequency depends on two system properties; mass 
and stiffness. The circular natural frequency, ωn, can be found 
using the following equation: 

                                                       (1) 

Where: 
k = stiffness of the beam 
m = mass of weight 
ωn = circular natural frequency (radians per second) 
 
From the circular frequency, the natural frequency, fn, can be 
found by simply dividing ωn by 2π. Without first finding the 
circular natural frequency, the natural frequency can be found 
directly using: 

                           (2) 

Where: 
fn = natural frequency in hertz (1/seconds) 
k = stiffness of the beam (Newton/Meters or N/m) 
m = mass of weight (kg) 

   For the forced harmonic frequency, the behavior of the 
spring mass damper model need to add a harmonic force in the 
form below. A force of this type could, for example, be 
generated by a rotating imbalance. 

                                   (3) 

Then, the sum the forces on the mass are calculate using 
following ordinary differential equation: 

    (4) 

The steady state solution of this problem can be written as: 

                    (5) 
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The result states that the mass will oscillate at the same 
frequency, f, of the applied force, but with a phase shift φ. 

The amplitude of the vibration “X” is defined by the following 
formula. 

        (6) 

Where “r” is defined as the ratio of the harmonic force 
frequency over the undamped natural frequency of the mass–
spring–damper model. 

                                                               
(7) 

The phase shift , φ, is defined by following formula. the base. 

                           (8) 

Figure 2. The frequency response of the system 
 
The plot of these functions, called "the frequency response of 
the system", presents one of the most important features in 
forced vibration. In a lightly damped system when the forcing 
frequency nears the natural frequency ( ) the amplitude 
of the vibration can get extremely high. This phenomenon is 
called resonance (subsequently the natural frequency of a 
system is often referred to as the resonant frequency). In rotor 
bearing systems any rotational speed that excites a resonant 
frequency is referred to as a critical speed. 

If resonance occurs in a mechanical system it can be very 
harmful – leading to eventual failure of the system. 
Consequently, one of the major reasons for vibration analysis 
is to predict when this type of resonance may occur and then 
to determine what steps to take to prevent it from occurring. 
As the amplitude plot shows, adding damping can 
significantly reduce the magnitude of the vibration. Also, the 
magnitude can be reduced if the natural frequency can be 
shifted away from the forcing frequency by changing the 
stiffness or mass of the system. If the system cannot be 
changed, perhaps the forcing frequency can be shifted (for 
example, changing the speed of the machine generating the 
force). 

The following are some other points in regards to the forced 
vibration shown in the frequency response plots. 

• At a given frequency ratio, the amplitude of the 
vibration, X, is directly proportional to the amplitude 
of the force F0 (e.g. if  double the force, the vibration 
doubles)  

• With little or no damping, the vibration is in phase 
with the forcing frequency when the frequency ratio 
r < 1 and 180 degrees out of phase when the 
frequency ratio r > 1  

• When r � 1 the amplitude is just the deflection of the 
spring under the static force F0. This deflection is 
called the static deflection δst. Hence, when r � 1 the 
effects of the damper and the mass are minimal.  

• When r � 1 the amplitude of the vibration is actually 
less than the static deflection δst. In this region the 
force generated by the mass (F = ma) is dominating 
because the acceleration seen by the mass increases 
with the frequency. Since the deflection seen in the 
spring, X, is reduced in this region, the force 
transmitted by the spring (F = kx) to the base is 
reduced. Therefore the mass–spring–damper system 
is isolating the harmonic force from the mounting 
base – referred to as vibration isolation. Interestingly, 
more damping actually reduces the effects of 
vibration isolation when r � 1 because the damping 
force (F = cv) is also transmitted to the base. 

This analysis is to find the natural frequency and harmonic 
frequency response of gearbox casing in order to prevent 
resonance for gearbox casing. From the result, this analysis 
can show the range of the frequency that is suitable for 
gearbox casing which can prevent maximum amplitude.  
 

 
II.   DESIGN OF GEARBOX CASING 

 
A.    Joint Design 
 Equivalent bolt radius for bolts connecting gearbox halves is 
= 3r 
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When r = 16.5mm (inside radius) 
=3×16.5   
=49.5mm (outside radius) 
When r = 13mm (inside radius) 
=3×13 
=39mm (outside radius) 
Thickness is 1mm. 
 

 
 

Figure 3: Bolts connecting gearbox halves 
 
B.    Supports Design 
 
Equivalent bolt radius to support is 
=1.25r 
When r = 16.5mm (inside radius) 
=1.25×16.5 
=20.625 mm (outside radius) 
Thickness is1mm 
 

 
 

Figure 4: Bolt radius to support (bottom view of gearbox casing) 
 

 
 

Figure 5: Details of one bolt for support 

 
 

Figure 6: Full box of gearbox casing 
 

 
III. MESH STRATEGY 

 
   The details of mesh strategy are defined in Table 1 and 
Figure 7.An appropriate mesh is selected to make sure this 
meshing can solve in 1 hour duration. This mesh is applied to 
whole object as one body meshing. 
 

Table 1: Details of meshing strategy 
 

Object Name Mesh 
State Solved 

Defaults 
Physics Preference Mechanical 

Relevance 0 
Advanced 

Relevance Center Coarse 
Element Size Default 

Shape Checking Standard Mechanical
Solid Element Midside Nodes Program Controlled

Straight Sided Elements No 
Initial Size Seed Active Assembly 

Smoothing Low 
Transition Fast 

Statistics 
Nodes 71961 

Elements 39946 
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Figure 7: Actual mesh of gearbox casing 
 

IV.   BOUNDARY CONDITION AND APPLIED LOAD 
 
  This section described the details of applied load and 
boundary condition of natural vibrations and harmonic 
analysis. 
 
A.    Natural Vibration Analysis 
A modal analysis is performed with number of modes is 
10.The details of the support is in Table 2 and Figure 8. 
 
 

Table 2: Details of boundary condition 
Object 
Name Fixed Support 

State Fully Defined 
Scope 

Scoping 
Method Geometry Selection 

Geometry 6 Faces 
Definition 

Type Fixed Support 
Suppressed No 

 

 
 

Figure 8: Actual fixed support on bottom created circle surface 
 

B.    Harmonic Frequency Response Analysis 
 
   In the harmonic frequency response analysis, the fixed 
support is exactly same condition in Figure 8. 
   In this analysis, 1MPa pressures is applied to the upper half 
of the bearings on one side of the gearbox and to the lower 
half of the other side  for a frequency range from zero to 1.2 
times the frequency of the tenth vibration mode. 
    This 1MPa pressure is applied normal to the surface 
according to the Table 3 and Figure 9. 
 
 

Table 3: Details of applied pressure and fixed support 
 

Object Name Fixed 
Support Pressure Pressure 

2 
Pressure 

3 
Pressure 

4 
State Fully Defined 

Scope 
Scoping 
Method Geometry Selection 

Geometry 6 Faces 1 Face 
Definition 

Type Fixed 
Support Pressure 

Suppressed No 
Define By  Normal To 
Magnitude  1. MPa 

Phase Angle  0. ° 
 
 
 
 

 
 

Figure 9: The actual applied load in gearbox casing. 
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V. RESULT  

These results for natural vibration analysis and harmonic 
frequency response analysis is done using ANSYS 11.0 
 
A.    Result of Natural Vibration Analysis 
 
 

 
Figure 10: Result of frequency corresponding to 10 modes for normal 

vibration analysis. 
 
 
From these result, 10 lowest vibration frequencies are: 
 

Table 4:10 lowest frequencies for natural vibration analysis 
 

Mode Frequency [Hz] 
1. 120.93 
2. 256.71 
3. 295.27 
4. 434.45 
5. 464.22 
6. 545.23 
7. 598.62 
8. 627.11 
9. 683.95 
10. 743.52 

 
B.    Result of Harmonic Frequency Response Analysis 
 
          In this harmonic frequency response analysis, frequency 
range need to be set up from zero to 1.2 times the frequency of 
the tenth vibration mode.In Table 4, tenth vibration mode is 
743.52 Hz. 
1.2×the frequency of the 10 th vibration mode 
= 1.2×743.52 
= 892.224 Hz 
From this result, 0-892 Hz frequency range is applied. 

 
 
 
Table 5: Applied frequency in Harmonic Frequency Response 

Analysis 
 

Object Name Analysis Settings
State Fully Defined 

Options 
Range Minimum 0. Hz 
Range Maximum 892. Hz 
Solution Intervals 200 

All the result is from one vertex as in the Table 5.This point is 
selected because this point is the maximum total displacement 
in the Figure 11. 
 

 
Figure 11: Analysis point 

 
A.    Result of Harmonic Frequency Response Analysis 
 
Y-axis result. 
  

 
 

Figure 12: Details of Y-axis result for normal stress 
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Figure 13: Details of Y-axis result for directional deformation. 

 
X-axis result. 
 

 
Figure 14: Details of X-axis result for normal stress 

 

 
Figure 15: Details of X-axis result for directional deformation 

 
 
 
 

 CONCLUSION 
From Figure 12 until Figure 15, the conclusion is: 
(a)In this analysis, pressure is applied to surface as in Figure 9 

as a normal to that surface. This is meaning that force is 
mainly applied to X-axis and Y-axis. Due to this reason, 
only result for Y-axis and X-axis is more considerable in 
this harmonic analysis. 

(b) For the Y-axis and X-axis, the first maximum amplitude 
for normal stress and directional deformation are happen at 
124.8 Hz. At this frequency, the resonance is occurred. 

(c) In this analysis, first resonance is happen when the ratio of 
harmonic forced frequency over natural frequency is 

     r = first resonance in harmonic forced frequency/first          
modal natural frequency 

      = 124.8/120.93 

       = 1.032 ≈ 1 

(d) In order to prevent the resonance, frequency ratio need to 
be setup to be less than 1.When r<<1 the amplitude is just 
the deflection of the spring under the static force F0. This 
deflection is called the static deflection δst. Hence, when 
r<<1 the effects of the damper and the mass are minimal. 
The magnitude can be reduced if the natural frequency can 
be shifted away from the forcing frequency by changing 
the stiffness or mass of the system. If the system cannot be 
changed, perhaps the forcing frequency can be shifted.  

(e) In this study, frequency ratio can set to 0.25 from the first 
modal natural frequency analysis in order to prevent 
resonance. 

         Forced frequency = 0.25× natural frequency 

                                 = 0.25×120.93 =    30.2325 Hz 

Static deflection can be achieved if forced frequency is 
from 0 Hz to 30.2325 Hz. 
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