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Abstract- This paper presents Two-Dimensional (2-D) system 
analysis based Iterative Learning Control (ILC) methods for 
Linear Time-Variant (LTV) discrete systems with multiple time 
delays. Both the state delays and the input delays are considered 
in the ILC design. The ILC research strategy for LTV discrete 
systems with multiple time delays is to rescontruct the derived 
ILC error equations into the 2-D Roessor’s model, so that the 
convergence conditions for the proposed ILC rules can be 
derived according to the convergence property of the 2-D 
Roessor’s model. A numerical example is used to validate the 
effectiveness of the proposed ILC methods. 
 

I.    INTRODUCTION 
 

Iterative Learning Control (ILC) is now a well-known 
control technique for improving the tracking response in 
systems that repeat a given task or operation over and over 
again. This makes ILC strategy widely used in the applications 
of robotic manipulators that are required to repeat a given task 
with high precision, disk drive systems or more generally, the 
class of tracking systems [1], [2]. Compared with other 
conventional control approaches, one of the prominent 
features of the ILC is that it provides improved performance 
with reduced knowledge of the plant. 

Since the ILC concept was introduced in 1984 by Arimoto 
et al. [1], a lot of research works have been contributed to 
develop ILC theory with efficient learning algorithms. Good 
surveys on these existing ILC techniques can be found in [3]-
[5]. Among these ILC techniques, it is worth noting that most 
of them mainly focus on dynamic systems without time 
delays, and there have been only limited works to study the 
ILC issue for dynamic systems with time delays [6]-[10]. In 
many practical applications such as batch processes, and 
remote controlled robots, and man-machine systems, etc., the 
existence of time-delays is inherent. A time-delay quite often 
degrades the performance of a control system, or even 
destabilizes the whole system. Therefore, the study of ILC for 
dynamical time-delayed systems has become essential and 
increasingly important over the past years [6]-[10]. In those 
limited ILC works to dynamic time-delayed systems, the state 
delays in uncertain nonlinear continuous-time systems were 
tackled by a high-order ILC approach in [6]. The initial 
condition issues on ILC for nonlinear continuous-time systems 
with state delays were discussed in [7]. The state delays and 
input delays in linear continuous-time systems were addressed 

independently by a kind of Two-Dimensional (2-D) system 
theory based ILC approach in [9]. More recently, by 
exploiting the theory of 2-D linear inequalities, Li et al. [10] 
further presented an ILC technique to deal with the input 
delays for nonlinear discrete-time systems. All of these 
promising ILC works for time-delayed systems, however, 
treated the state delays and input delays separately. 

There exist two different dynamics in an ILC system, 
namely, the dynamic along the time horizon and the dynamic 
along the learning iteration. Owing to two independent 
dynamic directions in 2-D dynamical systems, the 2-D system 
model provides an excellent mathematical platform to describe 
both the dynamics along the time horizon and the behavior of 
the learning iteration in an ILC system. Consequently, 2-D 
analysis approach has been successfully utilized to design the 
ILC systems [9]-[14], including the ILC designs for dynamical 
time-delayed systems [9], [10]. 

The main objective of this paper is to further extend the 
existing 2-D system theory based ILC techniques to Linear 
Time-Variant (LTV) discrete systems with time-delays. 
Different cases of time delays in LTV discrete systems are 
investigated. In the study of 2-D analysis based ILC for LTV 
discrete time-delayed systems, we address the ILC systems 
with multiple time-delays in state, and the ILC systems with 
multiple time-delays in input, respectively. Then the derived 
results are integrated and extended to the case with multiple 
time-delays both in state and in input. The employed design 
strategy is to reconstruct the derived ILC error equations in a 
compact form of the 2-D LTV discrete Roessor’s model so 
that we can present convergent ILC rules based on the 
property of the 2-D LTV discrete system. An important 
contribution of this paper is that unlike those existing ILC 
techniques for time-delayed systems [6]-[10], the state delays 
and the input delays are considered simultaneously in our ILC 
design.  

This reminder of this paper is organized as follows: Section 
2 addresses the 2-D system analysis based ILC techniques for 
LTV discrete systems with multiple time-delays in state, and 
Section 3 investigates the same ILC strategy for LTV discrete 
systems with multiple time-delays in input. Section 2 and 
Section 3 are synthesized in Section 4. A numerical example is 
given in Section 5 to demonstrate the effectiveness of the 
proposed ILC algorithm. Finally, Section 6 presents the 
conclusions. 
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II.   ILC FOR LTV DISCRETE SYSTEMS WITH MULTIPLE TIME 
DELAYS IN STATE 

 

Let us first consider the ILC problem of the following LTV 
discrete system with multiple time delays in state 

             
1

1
p

k k i k i k

i

x t A t x t A t x t t B t u t


      ,            

                                                                                             (1a) 

                                
k k

y t C t x t  ,                              (1b) 

where k  denotes learning iteration, and t  is the discrete time 
index running from 0  to N  ( 0N  ) to complete a cycle. For 

all t  and k ,   n

k
x t R ,   m

k
u t R , and   p

k
y t R  are 

the state vectors, input vectors, and output vectors, 
respectively. A(t), B(t), C(t), and Ai(t) (i = 1,2, … , p) are real 
matrices with appropriate dimensions. The delay factors 

1 2
, , ,

p
t t t  are assumed with 

1 2
0

p
t t t    . The desired 

output for system (1) is   p

d
y t R , 0,1, 2, ,t N  .  

At each iteration of ILC process, the output tracking error is 
denoted as follows 

                                    
k d k

e t y t y t  .                         (2) 

Then, the ILC problem for the LTV discrete system (1) with 
state delays is stated as follows: Given system (1) with initial 

state    
k

x t w t ,  , 1, , 2, 1, 0
p p

t t t      , and the 

desired output  
d

y t , 0,1, 2, ,t N  , iteratively determine 

an appropriate control input sequence   
k

u t  at 

0,1, 2, , 1t N   such that the ILC tracking error  
k

e t  

convergences to zero at 1, 2, ,t N   as iteration k  goes to 

infinity.  

For the ILC of the LTV discrete system (1) with state 
delays, we adopt the following ILC rule  

                      
1

1 1
k k k k

u t u t P t e t


                    (3) 

at the time step 0,1, 2, , 1t N  . In order to prove that the 

proposed ILC rule (3) can drive the ILC tracking error  
k

e t  

to zero, the following Lemma 1 will be used.  
 

Lemma 1 [11]. For the Roessor’s type model of 2-D LTV 
discrete system 

 
 

   
   

 
 

1, 1 , 2 , ,

, 1 3 , 4 , ,

X t k A t k A t k X t k

Y t k A t k A t k Y t k






    
    
    

,          (4) 

where    1 2, , ,n nX t k R Y t k R  ,   1 11 , n nA t k R  , 

  1 22 , n nA t k R  ,   2 13 , n nA t k R  , and   2 24 , n nA t k R  , 

boundary conditions for (4) are given by 

X(0, k) = 0 for k = 0, 1, 2, … and finite Y(t, 0) for t = 0, 1, 2, 
… .                                                                                         (5) 

If   4 , 1A t k   , , 0, 1, 2,t k    (  .  represents 

the spectral radius of matrix), then, for each t , we have    

 
 

,
lim 0

,k

X t k

Y t k


 
 
 

. 

Theorem 1: Consider the ILC for the LTV discrete system 
(1) with multiple time delays in state. If there exists gain 

matrix  
k

P t  to make the condition  

      1 1
k

I C t B t P t     , (t = 1,2,…,N)            (6) 

satisfied, then, using the ILC rule (3), we have  lim 0
k

k

e t


  

for 1, 2, ,t N  . 

Proof: Let us denote 

                            
1

1 1
k k k

t x t x t


    .                     (7) 

Using the system (1a) and the ILC rule (3), we have 

 1
k

t     
1k k

x t x t


   

       

   

       

1

1 1

1

       1 1

          + 1 1 1 1

k

p

i k i k

i

A t x t

A t x t t B t u t



 


  

     
                

   

       
1

                1 1

               1 1 1 1

k

p

i k i k

i

A t x t

A t x t t B t u t


  

      
        

       

      
1

1

               1 1

1 1 1                 

p

k i k i

i

k k

A t t A t t t

B t u t u t

 




     

    


    

   

         
1

              1

1 1 (8)              

k

p

i k i k k

i

A t t

A t t t B t P t e t






 

     
  

Furthermore, let us apply (1b) and (2) to following expression 

on  
1k

e t


, 

                     
1 1k d k

e t y t y t
 

                                                  

                                     1d k k k
y t y t y t y t


                                

                                 1
k k

e t C t t                                                    

                           

       

     
1

1

1  

k k

p

i k i

i

e t C t A t t

C t A t t t






  

  
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                             1  
k k

C t B t P t e t                  (9) 
Using the following matrix definitions 

 

     11 0 1 0 1

0 0 0 0

0 0 0 0

0 0 0 0 0

P

A t

A t A t A t

I

I

I



   
 
 
 
 
 
 
 
 

 

 

 

      

      



                                                                                             (10) 

       

 
 

 

 

 

1

2

1

k

k

k

k

k

k p

t

t

t t
t

t t

t t





















 
 
 
 
 
 
 
 
 
 
 
  







;   

   1

0

0

0

k
B t P t

B t





 
 
 
 
 
 
  



;     (11) 

          1
1 0 1 0 1

p
C t C t A t A t A t    

                                                                                             (12) 

we can derive the following 2-D LTV discrete Roessor’s 
system based on (8) and (9) 

 
 

   
       

 
 

1

1

1

k k

k k k

t A t B t t

e t C t I C t B t P t e t

 






 

     
          

(13) 

From the initial condition    
k

x t w t , 

 , 1, , 2, 1, 0
p p

t t t       for ILC system (1) and the 

definitions of  
k

t  and  
k

t , we know that the boundary 

condition for 2-D LTV discrete system (13) is  1 0
k

   for 

0,1, 2,k   . Theorem 1 is thus proved by applying 

Lemma 1 to (13). End of the proof. 
 

III.   ILC FOR LTV DISCRETE SYSTEMS WITH MULTIPLE TIME 
DELAYS IN INPUT 

 

Let us then consider the ILC problem of the following LTV 
discrete system with multiple time delays in input 

                 
1

1
q

k k j k j

j

x t A t x t B t u t 


     ,      (14a) 

                                  
k k

y t C t x t  .                         (14b) 

The delay factors 
1 2
, , ,

q
    in (14) are assumed with 

1 2
0

q
      . The initial iterative condition is set as 

   
0

0 0
k

x x  for 0,1, 2,k   . As the LTV discrete 

system (14) iteratively tracks the desired output  
d

y t  at 

1, 2, ,t N  , we adopt the following ILC rule  

             
1 1 1

1 1
k k k k

u t u t P t e t 


               (15) 

at the time step 
1

, 1, 2, , 1
q q q

t N           , where 

the definition of  
k

e t  in (2) is extended to   0
k

e t   as 

0t  , and set   0
k

P t   as 0.t   

Theorem 2: Consider the ILC for the LTV discrete system 
(14) with multiple time delays in input. If there exists gain 

matrix  
k

P t  to make the condition 

          
1

1 1
k

I C t B t P t     ,(t = 1,2, … , N)   (16) 

satisfied, then, using the ILC rule (15), we have  lim 0
k

k

e t


  

for 1, 2, ,t N  . 

Proof: Using (14), (7) and the ILC rule (15), we obtain for 
1, 2, ,t N  , 

             1
k

t     
1k k

x t x t


   

   

   
1

1

1

                          1 1

1 1                         

k

q

j k j

j

A t x t

B t u t 






  

   
                    

   

   
1

                           1 1

1 1                       

k

q

j k j

j

A t x t

B t u t 


  

   
                     

   

      1

1

                          1

                           1 1 1

k

q

j k j k j

j

A t t

B t u t u t



 




 

       
   

     1 1

1

                          1

1                         

k

q

j k j k j

j

A t t

B t P t e t



   


 

      
                                                                                             (17) 

           
1 1k d k

e t y t y t
 

                                                    

                           1d k k k
y t y t y t y t


                                        

                       1
k k

e t C t t                                                       
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       

       1 1

1

1

1 

k k

q

j k j k j

j

e t C t A t t

C t B t P t e t



   


  

     
               

                                                                                             (18) 
 
 
 

Let us denote the following matrices 

                 

             2 2 1 3 3 1 1
1 0 1 0 1 0 1

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

k k q k q
A t B t P t B t P t B t P t

A t I

I

              



 
 
 
 
 
 
  

   

   

    

          

  

 

 
 
 

 1

1

2

k

k

kk

k q

t

e t

e tt

e t





 





 

 
 
 
 
 
 
  





;          

   1
1

0

0

k
B t P t

I

B t





 
 
 
 
 
 
  





; 

                                 

                  2 2 1 3 3 1 1
          1 0 1 0 1 0 1      

k k q k q
C t C t A t B t P t B t P t B t P t                    

 
then, we derive the following 2-D LTV discrete Roessor’s 
system based on (17) and (18) 

   
 
 

   
       

 
 

1 1

1

1

k k

k k k

t A t B t t

e t C t I C t B t P t e t

 






 

     
          

  


    

                                                                                             (19) 

From the initial iterative condition    
0

0 0
k

x x  for 

0,1, 2,k   ,p the extended definition   0
k

e t   for 0t  , 

and the definitions of  
k

t  and  
k

t , we know that the 

boundary condition for 2-D LTV discrete system (19) is 

 1 0
k

   for 0,1, 2, ,k p  . Theorem 2 is thus proved by 

applying Lemma 1 to (19). End of the proof.  
 

IV.   ILC FOR LTV DISCRETE SYSTEMS WITH MULTIPLE TIME 
DELAYS BOTH IN STATE AND IN INPUT 

 

  In this section, Section 2 and Section 3 will be integrated 
to address a more complicated case. For the ILC problem of 
the following LTV discrete system (20), the time delays both 
in state and in input will be investigated together 

          

         

   
1

1

1

(20a)                                     

p

k k i k i

i

q

j k j

j

x t A t x t A t x t t

B t u t 





    

 




       

                                
k k

y t C t x t  .                            (20b) 

The delay factors 
1 2
, , ,

p
t t t  and 

1 2
, , ,

q
    are assumed 

with 
1 2

0
p

t t t     and 
1 2

0
q

      . The initial 

iterative condition is set as    
k

x t w t  for 

 , 1, , 2, 1, 0
p p

t t t       and 0,1, 2,k   . As the 

LTV discrete system (20) iteratively tracks the desired output 

 
d

y t  at 1, 2, ,t N  , we adopt the following ILC rule  

          
1 1 1

1 1
k k k k

u t u t P t e t 


                  (21) 

at the time step 
1

, 1, 2, , 1
q q q

t N           , where 

the definition of  
k

e t  in (2) is extended to   0
k

e t   as 

0t  , and set   0
k

P t   as 0.t   

Theorem 3: Consider the ILC for the LTV discrete system 
(20) with multiple time delays both in state and in input. If 

there exists gain matrix  
k

P t  to make the condition 

        
1

1 1
k

I C t B t P t     ,( t = 1,2, … , N)     (22) 

satisfied, then, using the ILC rule (21), we have  lim 0
k

k

e t


  

for 1, 2, ,t N  . 

Proof: Using (20), (7) and the ILC rule (21), we obtain for 
1, 2, ,t N  , 

    1
k

t     
1k k

x t x t


   
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       

   

1 1

1

1

1

1 1 1 1

1 1 

p

k i k i

i

q

j k j

j

A t x t A t x t t

B t u t 

 





      

   




      

       

   
1

1

                     1 1 1 1

1 1                  

p

k i k i

i

q

j k j

j

A t x t A t x t t

B t u t 





      

   




       

       

      
1

1

1

                   1 1

1 1 1                   

p

k i k i

i

q

j k j k j

j

A t t A t t t

B t u t u t

 

 






    

       




 

       

     
1

1 1

1

                   1 1

1                   

p

k i k i

i

q

j k j k j

j

A t t A t t t

B t P t e t

 

   





    

      




   

                                                                                             (23) 
         

             
1 1k d k

e t y t y t
 

                                             

                             1d k k k
y t y t y t y t


                                  

                         1
k k

e t C t t                                                

                    

       

     
1

1

1 

k k

p

i k i

i

e t C t A t t

C t A t t t






  

  
 

                             1 1

1

1
q

j k j k j

j

C t B t P t e t   


                        

                                                                                             (24) 
 

 
Let us define the following matrices                                                                                                                                                       
                              

 

           2 2 1 3 3 1 1
0 1 0 1 0 1

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

k k q k q
B t P t B t P t B t P t

I

M t

I

             



 
 
 
 
 
 
 
 
 
  

   

   

   

   

         

         

  

                           

0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

I

N t I

I



 
 
 
 
 
 
  

 

 

 

      

 

;  

   1
1

0

0

k
B t P t

V t





 
 
 
 
 
 


;  

   
 0

A t M t
E t

N t

 
  

;  

                                    

 
 
 

 1

1

2

k

k

kk

k q

t

e t

e tt

e t





 





 

 
 
 
 
 
 
  



;    

 

0

0

V t

I

F t 

 
 
 
 
 
 
  



;         G t C t H t . 

                   2 2 1 3 3 1 1
0 1 0 1 0 1

k k q k q
H t C t B t P t B t P t B t P t                  

 

where  A t ,  C t  and  
k

t  are defined as in (10), (11), 

and (12), respectively.                     
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Using the above matrix definitions, we can derive the 
following 2-D LTV discrete Roessor’s system based on (23) 
and (24) 

 

 

 
 

   
       

 
 

1 1

1

1

k k

k k k

t E t F t t

e t G t I C t B t P t e t

 






 

     
          

            

                                                                                             (25) 

From the initial iterative condition    
k

x t w t  for 

 , 1, , 2, 1, 0
p p

t t t       and 0,1, 2, ,k p  , the 

extended definition   0
k

e t   for 0t  , and the definitions of 

 
k

t  in (7),  
k

t  in (11), and  
k

t , we know that the 

boundary condition for 2-D LTV discrete system (25) is 

 1 0
k

   for 0,1, 2, ,k p  . Theorem 3 is thus proved by 

applying Lemma 1 to (25). End of the proof. 
From Theorem 3 and the ILC rule (21), we know that for the 
LTV discrete system (20), there are multiple time delays 
included both in state and in input, but the proposed ILC rule 
(21) is only related to the smallest time delay factor in input. 
This point is similar to the results obtained in [10], but the 
state delays aren’t included there. It can be further illustrated 
by the simulation in Section 5.   
 

V.   SIMULATION 
 

Example: Consider an ILC problem of the following LTV 
discrete system with time-delays both in state and in input 

  
             

   
1 1

2

1 3 2

4 (26a)                                               
k k k k

k

x t A t x t A t x t B t u t

B t u t

     

 
    

           
k k

y t C t x t ,   0, 1, 2, , 100t         (26b) 

where          1 2 T

k k k
x t x t x t    ,   

 
0.25 0.22 cos

0.46 0.3sin 0.05

t
A t

t

 


 

 
  

, 

 
1

0.01 0.06

0.15 0.5sin(2 )

t
A t

t



 
  

,  
1

0.027 1

0.12

t
B t



 
  

, 

 2

0.4

0.8 cos
B t

t



 
  

, and    0.45 0.001C t t  . The 

initial value of state variable is    0 0
T

k
x t   for t = -3, -2, 

-1, 0. The desired output  
d

y t  is described as 

  1.2 sin(0.05 ) 0.5
d

y t t  ,   0, 1, 2, , 100t   . 

Regarding the iterative initial condition, it is noticed that we 

don’t require    0 0 .
d k

y y The accuracy of ILC is 

evaluated by the following total square error of tracking 

    
100

2

1

k d k

t

EE y t y t


  . 

In the ILC process of system (26), provided that we have no 
accurate information on matrices A(t), A1(t), B1(t), B2(t), and 
C(t). The estimated values for matrices B1(t) and C(t) are 
given as  

 
1

0.03( 1) 1.2
ˆ

0.18

t
B t

 

 
  

 and    ˆ 0.4 0.003 .C t t   

Regarding the delay factors in (26), we only know the accurate 

value of the smallest delay factor 
1
  in input as 

1
2  .  

As the proposed ILC rule (21) for the LTV discrete system 

(20) is used, we set the initial control input as    
0

0 0
T

u t   

for  4, 3, 2, , 96, 97t      . The gain matrix  
k

P t  is 

selected as  

               
1

1 1 1
ˆ ˆ ˆˆ ˆ ˆ0.5 1 1 1

T T

k
P t C t B t C t B t C t B t



     
 for  1, 2, , 100t   , and   0

k
P t   for 0t  . 

Obviously, the determined gain matrix  
k

P t  can make        

      
1

1 1
k

I C t B t P t      

for  1, 2, , 100t   . Fig. 1 shows the curve of the total 

squared error 
k

EE  of tracking in the process of ILC rule (21) 

being iteratively executed.  

When the ILC rule (21) is iteratively executed for 5 and 6 
times, respectively, the tracking performance of the ILC 

system (26) to the desired output  
d

y t  is illustrated in Fig. 

2. And Fig. 3 presents the resultant control input after the ILC 
system (26) convergences using the ILC rule (21). From Fig. 1 
and Fig. 2, it can be noticed that the convergence rate of the 
proposed ILC rule (21) is high and the ILC system output 

 
k

y t  is capable of approaching the desired trajectory  
d

y t  

accurately within few iterations.  
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Fig. 1. The curve of the total squared error 

k
EE  of tracking in the process of 

ILC rule (21) being iteratively executed 

 

 
 

Fig. 2. The tracking performance of the ILC system (26) to the desired output 

 
d

y t  when the ILC rule (21) is iteratively executed for 5 and 6 times, 

respectively 

 

 
 

Fig. 3. The resultant control input after the ILC system (26) convergences 
using the ILC rule (21) 

 
VI.   CONCLUSION 

 

 We have shown that the 2-D LTV discrete Roesser’s model 
can be applied to describe the ILC process of LTV discrete 
systems with multiple time delays. As a result, ILC rules with 
convergent conditions can be derived based on the 
convergence property of the 2-D LTV discrete Roesser’s 
model. Different situations of time delays in LTV discrete 
systems are discussed. From both theoretical investigation and 
simulation, it can be concluded that there are multiple time 
delays included in LTV discrete systems, but the proposed 
ILC rule is only related to the smallest delay factor in input.  
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