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Pemodelan Kotak-Hitam dan Kawalan Suai Sistem Peti Sejuk Hibrid Elektrik
Haba

ABSTRAK

Pembawa vaksin telah digunakan untuk mengekalkan suhu dalam 2-8°C. Walaupun,
pembawa vaksin tidak berfungsi dengan baik yang boleh mendedahkan vaksin kepada
suhu beku. Peti Sejuk Hibrid Elektrik Haba dibangunkan untuk pengangkutan vaksin
sensitive ke hospital pada suhu yang dikawal tepat. Peti sejuk ini menggunakan pam
elektrik haba udara-ke-udara dan langsung. Tugasan ini melaporkan pemodelan dan
kajian kawalan yang dijalankan untuk sistem. Bahan bekas (aluminuim dan keluli tahan
karat) dari jenis yang berbeza digunakan dan perbandingan diantara mereka dianalisa.
Sistem ini tidak lelurus dan mempamerkan parameter model yang berubah-ubah, dan
masa mati. Objektif dalam kajian ini adalah untuk menyiasat strategi kawalan yang
berasaskan kepada pengetahuan loji bukan keutamaan namun membenarkan
penyesuaian berterusan untuk pengawal kepada sistem dinamik ‘yang berubah-ubah.
Malah, beban penyejukan yang pelbagai juga menyebabkan-pengurangan kecekapan
peti sejuk termasuk masukkan turun naik paras arus yang disebabkan oleh prestasi
elektronik komponen dan keadaan operasi modul thermoelektrik pada hujung sejuk dan
panas yang pelbagai sepanjang masa. Oleh itu sistem kawalan suai dipertimbangkan
menangani masalah yang dinyatakan di atas. Pendekatan pemodelan kotak-hitam dipilih
kerana ini diperlukan untuk perlaksanaan pengawal suai. Sistem H-TER telah dikenal
pasti menggunakan kedua-dua kaedah Rekursi Kuasa Dua Terkecil (RLS) dan Rekursi
Dipanjangkan Kuasa Dua (RELS). Memandangkan RELS telah terbukti memberi
anggaran yang berat sebelah bagi data’yang ditapis dan anggaran penumpuan perlahan
bagi data yang tidak ditapis, nilai-didapati daripada RLS telah dipilih untuk model ini.
Model tertetib kedua sistem H-TER | dan H-TER Il didapati secukupnya mewakili
sistem tersebut kerana ia member padanan terbaik 0.0009 dan 0.0007 masing-masing,
dengan membuat tertib. keempat menjadi tidak signifikan. Prosedur pengesahan
menggunakan model tertib kedua untuk penilaian dalam talian, menunjukkan bahawa
model ini sememangnya perwakilan yang baik bagi sistem H-TER. Pengawal On-Off
dan PI adalah yang biasa digunakan dalam sistem penjana elektrik haba untuk sistem ini
diaplikasikan, sebagai kajian kes. Pengawal Pl menunjukkan prestasi yang lebih baik
daripada pengawal On-Off dari segi ralat keadaan mantap. Tetapi pengawal PI tidak
memberikan prestasi yang baik kepada masukkan lelurus sesecebis pengaturan serta
merta ‘kerana parameter pengawal tidak dapat menyesuaikan dengan sewajarnya. Dua
pendekatan utama penyesuaian kawalan talaan-diri iaitu Pengawal Teritlak Minimum
Varian (GMVC) dan Pengawal Tokokan Teritlak Minimum Varian (IGMVC). Kaedah
IGMVC menghasilkan prestasi yang terbaik dari segi ralat keadaan mantap kurang
daripada £0.15°C. Walau bagaimanapun, kedua-dua algoritma memenuhi keperluan
keluaran sistem H-TER, yang seharusnya sekitar 4°C, dengan kehadiran lelurus
sesecebis masukkan. Kerana pemodelan sistem H-TER melibatkan masa mati,
disebabkan keadaan muatan yang berbeza, satu Teritlak Ramalan Pengawal (GPC) juga
dilaksanakan bagi menangani perkara ini. Menggunakan GPC ini, ia didapati bahawa
sistem H-TER sentiasa stabil walaupun dengan kehadiran lelurus sesecebis masukkan
dari segi mengesan dan mengawal. la melihat bahawa prestasi pengawal GPC
penjejakan dan pengaturan adalah lebih baik daripada GMVC dan IGMVC.
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Black-Box Modeling and Adaptive Control of Hybrid Thermoelectric Refrigerator
Systems

ABSTRACT

Vaccines carrier has been used to keep the temperature within 2-8°C. However, a
poorly functioning vaccines carrier may expose the vaccines to freezing temperatures.
Hybrid Thermoelectric Refrigerator (H-TER) systems are developed in order to
transport sensitive vaccines to hospitals at accurate controlled temperature. The
refrigerator use air-to-air and direct thermoelectric heat pumps. This work reports on
modeling and control studies carried out for H-TER systems that can control low
temperature accurately. Different type of material containers (aluminium and stainless
steel) is used and comparisons between them are analyzed. The systems-are nonlinear
and exhibits varying model parameters and dead-time. The objective of the study is to
investigate control strategies that are based on non-priori plant ‘knowledge and yet
allowing for continuous adaptations of the controller to changing system dynamics. In
fact, the various cooling load also causes a reduction of refrigerator efficiency including
the fluctuation of imposed current level due to electronic.component performance and
varied operating condition of thermoelectric module an.cold and hot ends against time.
Thus an adaptive control system is considered to handle the problems that are stipulated
above. A black box modeling approach is chosen since this is needed for the
implementation of adaptive controllers. The H-TER systems have been identified using
both Recursive Least Squares (RLS) and/Recursive Extended Least Squares (RELS)
methods. Since RELS has shown to give biased estimates for filtered data and slow
convergence estimates for unfiltered ‘data, RLS has been chosen for the model as its
give a better representation of the ‘systems. A second order model of H-TER | and H-
TER 11 systems are found to adequately represent the system as it give best fit of 0.0009
and 0.0007 respectively which made the fourth order to be insignificant for
implementation. Validation‘procedures using second order model for online estimation,
show that the model is indeed a good representation of the H-TER systems. On-Off and
PI controllers are the.commonly used in thermoelectric system is applied to this system
as case studies, Pl-controller shows better performance over On-Off controller in term
of steady state error. However, the PI controller does not provide a good piecewise
linear input.regulation performance instantaneously because the controller parameters
could not adapt accordingly. Two main adaptive self-tuning control approaches i.e.
Generalized Minimum Variance Controller (GMVC) and Incremental Generalize
Minimum Variance Controller (IGMVC) with varying control weighting parameters are
implemented. The IGMVC method produces the best performance in terms of steady
state error less than +0.15°C. However, both algorithms satisfy the requirement of the
H-TER systems output, which should be around 4°C, in the presence of piecewise linear
input. As modeling of the H-TER systems involve time delay, due to different loading
condition, a Generalize Predictive Controller (GPC) is also implemented to address this
matter. Using the GPC, it is observed that the H-TER systems are always stable even in
the presence of piecewise linear input in term of tracking and regulating. It is observe
that the performance of the GPC controller tracking and regulating is superior to GMVC
and IGMVC.
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CHAPTER 1

INTRODUCTION

1.1 Overview

It is a common fact that vaccines are very sensitive to heat\and light, with some
types of vaccines should not even be frozen. Thus, vaccines need to be stored at an
appropriate temperature range from the time of manufacture until the time of use.
Vaccines will lose its optimal potential, if not-stered or transported in an appropriate
environment temperature or exposure ‘toy light. Maintaining appropriate storage
temperature for vaccines is not an easy task. Failure to do so can be disastrous to the
user. Vaccine must be kept in.optimum condition to achieve effective immunization to

the user.

Among_ the-key element for improving the quality of immunization programs is
to ensure the.management level at cold chain and vaccine logistics is in good condition.
The cold chain is a system of transport and storage of vaccines at controlled
temperatures ranging from 2°C to 8°C as shown in Fig 1.1. This temperature range has
been chosen by the World Health Organization (WHO), and has been adopted by the
Australian Technical Advisory Group on Immunization (ATAGI) as their manual for
vaccine protection against damage by heat and cold (WHO, 2011). Cold chain is a

system that starts from the time vaccines are produced, then continues through to the



