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KLASIFIKASI PERSEPSI PENGLIHATAN DENGAN MENGGUNAKAN 

ISYARAT EEG UNTUK ANTARA MUKA OTAK-KOMPUTER (BCI) 

 

 

ABSTRAK 

 

 

Pengidap penyakit Neuron Motor Disorder (MND) dan separa lumpuh kebiasaannya 

akan menghadapi masalah umtuk bergerak sekiranya tiada bantuan daripada orang lain. 

Oleh itu, kajian ini dijalankan untuk menunjukkan bahawa persepsi visual boleh 

digunakan untuk membantu pesakit bagi mengawal pergerakan menggunakan kerusi roda. 

Ini boleh tercapai dengan mengintegrasikan hasilan kawalan tersebut ke pengawal kerusi 

roda automatik.  Sistem Brain-Computer Interface (BCI) memerlukan signal 

Electroencephalography (EEG) diekstrak daripada subjek menggunakan Mindset24 EEG 

Amplifier. Selepas itu, nisbah isyarat-kepada-hingar dianalisa dengan kaedah Analisa 

Varians (ANOVA) bagi mendapatkan isyarat dengan kandungan hingar yang tinggi dapat 

dihasilkan daripada sampel. Kemudian, tenaga spektrum daripada jalur isyarat EEG (θ, 

α, β1, β2, β3 dan γ) yang berkaitan dengan persepsi visual individu diekstrak. 

Kemudiannya, pengurangan dimensi dibuat untuk memastikan pengasingan ciri-ciri 

dengan menggunakan Devijver’s Feature Index (DFI) dan Principle Component Analysis 

(PCA).  Akhir sekali, model rangkaian neural seperti multi-layer perceptron (MLP), 

Elman Recurrent Neural Network (ERNN) dan nonliner autoregressive exogenous model 

(NARX) telah digunakan untuk menentukan persepsi visual subjek, dengan mencapai 

ketepatan purata yang melebihi 90%.  Pengkelas ERNN telah menunjukkan pencapaian 

ketepatan tertinggi di dalam kedua-dua paradigma Locational Matching dan Image 

Recognition dengan masing-masing mencapai tahap 98.96% dan 97.81%.  Oleh itu, 

pengkelas ERNN adalah yang paling sesuai untuk digunakan bagi aplikasi menggunakan 

persepsi visual bagi membantu pesakit MND bergerak menggunakan kerusi roda 

automatik.  
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CLASSIFICATION OF VISION PERCEPTION USING EEG SIGNALS FOR 

BRAIN-COMPUTER INTERFACE (BCI) 

 

 

ABSTRACT 

 

 

Patients suffering from Motor Neuron Disease (MND) and semi-paralysis have 

trouble to maneuver a conventional wheelchair independently. As a response, this 

research was conducted whereby an individual’s visual perception can associate to 

movement controls. The designed system could later on be integrated into an autonomous 

wheelchair. The Brain Computer Interface (BCI) system would require the 

Electroencephalography (EEG) signal to be recorded from the subject using Mindset24 

EEG amplifier. Subsequently, the signals’ noise content was been analysed with analysis 

of variance (ANOVA) whereby signal with high noise content was removed from the 

samples. Then, spectral energy of different bands of EEG signal (θ, α, β1, β2, β3 and γ) 

pertaining to an individual’s visual perception were extracted. Next, dimension reduction 

was performed to select band features based on feature separability using Devijver’s 

Feature Index (DFI) and Principle Component Analysis (PCA). Finally, neural network 

models, namely, multi-layered perceptron (MLP), Elman Recurrent Neural Network 

(ERNN) and nonlinear exogenous autoregressive model (NARX) have been designed to 

as classifiers to determine the subject’s visual perception, with an average accuracy of 

over 90%. Among the trained classifier, ERNN was chosen for it yielded a relatively 

higher performance in the both the Locational Matching and Image Recognition 

Paradigm in terms of classification accuracies (97.75% and 97.81% respectively). 

Therefore ERNN is the most suitable classifier to be used for application of visual 

perception to help MND patient navigate in a wheelchair. 

 
 

 
 

 
 

 
 

 
 

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t 

 



1 

 

CHAPTER 1 

 

INTRODUCTION 

 

1.1 Research Background 

 

The recent advances in neuroscience enable the design of revolutionary ways for 

humans to communicate with a machine using Brain Computer Interfaces (BCI). A BCI 

system let humans interact with the physical world without depending on muscular 

movements (Wolpaw et al., 2000; Cheng et al., 2002; Allison, 2012). Such a technology 

proved invaluable for those suffering from motor neuron impairments (Leigh et al., 1994), 

or otherwise, known as a group of disease called Motor Neuron Disease (MND). Patients 

with MND, including those suffering from Cerebral Palsy or Amyotrophic Lateral 

Sclerosis (ALS) are known as lock-in patients, where they can still be fully aware of their 

surroundings but are unable to respond physically like normal humans do (Patterson et 

al., 1986).  

ALS is defined as a devastating and fatal neurological disorder due to selective 

degeneration of neurons responsible for voluntary movements. Therefore, patients 

suffering from ALS will gradually have trouble to perform physical movements. 

Moreover, these patients can experience weakness and paralysis, while in some cases, 

might even be fatal (Ilzecka, 2003). This genetic abnormality is affecting one in every 

24,000 individuals around the world (Fehr et al., 2000). The idea that the disease is 

hereditary was rejected by most researchers as only a small proportion of ALS patients 

being identified (10%) having a history of family background related to the disease (ALS 

Association). More plausible causes that lead to the disease were studied by medical 
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