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ABSTRAK 

Pemerhati Tak Linear Tanpa Giroskop untuk Satelit RazakSAT 

Penentuan sikap keadaan satelit merupakan salah satu aspek penting dalam Sistem 

Penentuan dan Kawalan Sikap Satelit (ADCS) sesebuah satelit. Sikap keadaan satelit 

perlu ditentukan untuk dihantar kepada sistem kawalan dalam mencapai sesuatu misi 

satelit tertentu seperti pemerhatian Bumi, komunikasi, penyelidikan saintifik dan lain-

lain misi. Dalam kebiasaan amalan  ADCS, keadaan semasa halaju dan sikap kapal 

angkasa diperolehi masing-masing daripada pengukuran giroskop dan sensor sikap. 

Walau bagaimanapun, giroskop adalah mahal dan sering terdedah kepada kegagalan 

berfungsi. Oleh itu penyelidikan ini bertujuan untuk mengkaji sistem anggaran untuk 

kapal angkasa tanpa giroskop. Dalam penyelidikan ini, model matematik tidak linear 

sistem ini diterbitkan menggunakan gabungan persamaan gerakan dinamik dan 

persamaan gerakan kinematik menggunakan parameter sudut Euler. Kebolehtinjauan 

sistem anggaran yang diterbitkan dipastikan menggunakan teknik derivatif Lie  untuk 

memastikan kebolehtinjauan sistem. Model tidak linear tersebut juga ditentusahkan 

menggunakan data telemetri penerbangan RazakSAT, satelit Malaysia yang telah 

mengorbit dalam Orbit Hampir Khatulistiwa pada tahun 2009 menggunakan „extended 

Kalman filer‟ (EKF), algoritma yang telah banyak diaplikasikan dalam praktis kapal 

angkasa.  Dalam penyelidikan ini juga, hingar putih bukan Gaussian dalam sistem 

anggaran didiagnosis dan dianalisis berdasarkan data telemetri RazakSAT 

menggunakan teknik-teknik statistik. Prestasi anggaran keadaan semasa ketiadaan 

giroskop menggunakan algoritma „particle filter‟ (PF) juga dikaji dan dibandingkan 

dengan EKF dari segi aspek ketepatan, beban masa komputasi dan ketahanan terhadap 

hingar bagi tujuan pelaksanaan yang cekap. Hasil kajian menunjukkan bahawa sistem 

tanpa giroskop dapat menyediakan maklumat halaju sudut dalam ketepatan 0.1 deg/s, 

yang sesuai untuk penentuan sikap berketepatan sederhana seperti ketika mod 

pengemasan dan detumbling. Dari segi aspek ketepatan dan ketahananan terhadap 

hingar, PF menunjukkan kebolehannya memberi keputusan anggaran yang lebih tepat 

dalam keadaan hingar bukan Gaussian dan bukan putih dan lebih tahan terhadap 

ketidakpastian pengukuran. Manakala dari segi aspek masa komputasi, hasil kajian 

menunjukkan bahawa EKF adalah lebih cepat daripada algoritma PF. 

Walaubagaimanapun untuk aplikasi ini, PF adalah sangat dicadangkan semasa 

ketidakpastian pengukuran yang amat tinggi disebabkan oleh kegagalan yang tidak 

dijangka daripada sensor sedia ada. Kajian sistem tanpa giroskop ini mampu 

menyumbang sebagai sistem alternatif atau sokongan semasa ketiadaan data halaju 

sudut satelit yang disebabkan oleh kerosakan sensor atau direka bagi tujuan 

mengurangkan sensor yang mana secara tidak langsung mengurangkan kos dan 

perkakasan komplikasi. 
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ABSTRACT 

Gyroless Attitude Nonlinear Observer for RazakSAT Satellite 

Satellite attitude determination is one of the important aspects in Attitude Determination 

and Control System (ADCS) of a satellite. Satellite attitude is important to be 

determined in a satellite to be fed back to controller in accomplishing a specific satellite 

mission such as Earth observation, communication, scientific research and many other 

missions. In commonly practice of ADCS, the angular velocity and attitude information 

of a spacecraft are obtained respectively from measurement of gyroscopes and attitude 

sensors. However, gyroscopes are generally expensive and are often prone to 

degradation or failure. Hence this research work is intended to study the state estimation 

system for gyroless spacecraft. In this work, the nonlinear mathematical model of the 

system is derived using combination of dynamics equation of motion and kinematics 

equation of motion using Euler angles attitude parameter. The observability of the 

derived nonlinear system is investigated using Lie derivative technique to ensure the 

system observability. The derived nonlinear model is also validated and verified using 

real in-flight telemetry attitude data of RazakSAT, the Malaysian satellite was orbiting 

in Near Equatorial Orbit in 2009 via extended Kalman filter (EKF), the most widely 

used algorithm in spacecraft practice. The non-Gaussian non-white noise in estimation 

system based on RazakSAT telemetry attitude data also is diagnosed and analyzed in 

this work using statistical techniques. Finally, the performance of state estimation 

during gyroless condition using particle filter (PF) algorithm is studied and compared 

with the EKF in terms of accuracy, computational time load and robustness aspects for 

efficient on-board implementation. The result shows that the gyroless system is able to 

provide the information of angular velocity within 0.1 deg/s accuracy, which is suitable 

for moderate accuracy attitude determination such as during housekeeping and 

detumbling mode. In terms of accuracy and robustness aspects, the PF shows its ability 

to provide more accurate estimation in non-Gaussian and non-white noise 

circumstances and more robust to measurement uncertainty. Meanwhile in terms of 

computational time aspect, the result shows that EKF is faster than PF algorithm. For 

this application, the PF is strongly suggested during contingency condition of extremely 

inaccurate or large uncertainty measurements such as due to unexpected failure of the 

existing sensor. The study of gyroless system contributes as an alternative or backup 

system during unavailable angular velocity data resulted from faulty sensor or 

deliberately designed for sensor reduction which indirectly represent cost and hardware 

complexity reduction. 
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CHAPTER 1 

INTRODUCTION 

1.1  Background 

Today, a satellite is undoubtedly important to the world. On the average, the 

world use some form of space asset many times per day with the aid of satellite 

including weather, television, telephones, navigation, internet and more. The 

importance applications of a satellite in man daily life make the development of the 

satellite became an extensive research field. Malaysia also is already going into the race 

of aerospace technology.  

In general, a satellite is defined as any object orbiting in an orbit. In the context 

of spaceflight, a satellite is an artificial object which has been intentionally placed into 

orbit. Such objects are sometimes called artificial or man-made satellites to distinguish 

them from natural satellites such as the Moon. In this thesis the satellite refers to the 

artificial satellite.  

Historically, Malaysia satellite programme was initialized by the 4
th

 Prime 

Minister of Malaysia,Tun Dr. Mahathir Mohamad in 1993 to develop Malaysia's first 

satellite communications system. The first satellite in Malaysia is Malaysia East Asia 

Satellite (MEASAT), a communication satellite owned and operated by a Malaysian 

communications satellite operator MEASAT Satellite Systems Sdn. Bhd. Meanwhile 

TiungSAT, the first Malaysian microsatellite was developed through the technology 

transfer and training programme between Astronautic Technology Sdn. Bhd. (ATSB) 
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Malaysia and Surrey Satellite Technology of the United Kingdom in 2000 for 

experiments in Earth imaging, observation of meteorology, detection of cosmic rays, 

data storage and communications. Development of Malaysia satellite programme 

continued with development of RazakSAT, the first remote sensing satellite launched 

into a unique Near Equatorial Orbit in 2009 for imaging opportunities in the equatorial 

region. It was jointly developed by ATSB and Satrec Initiative, a commercial satellite 

manufacturer in Korea. Meanwhile, the piggyback satellite Innovative Satellite, 

InnoSAT  is a nano satellite mission to demonstrate local innovative space technology 

amongst the instituition of higher learning in the space sector. It is developed by the 

Universiti Sains Malaysia (USM), Universiti Teknologi Malaysia (UTM) and Universiti 

Malaysia Perlis (UniMAP). The purpose of this payload is to provide a satellite 

navigation module based on a space GPS receiver (SGR) that is low-cost to build which 

uses generic, off-the-shelf (COTS) components and in-house developed algorithms.  

Basically, there are four important subsystems of a satellite in accomplishing its 

mission in space. They are attitude determination and control subsystem (ADCS), 

telemetry, tracking and command (TT&C)  or also known as communication (COMM) 

subsystem, command and data handling (C&DH), and electrical power subsystem 

(EPS) (Wertz & Larson, 2004; Sharun, 2013). Every subsystem has its own specific 

task to maintain the satellite while orbiting, as described briefly as follows: 

i. Attitude determination and control subsystem (ADCS) serves to determine the 

current states of the satellite and control by stabilizing or orienting it into desired 

directions during the mission despite of the external disturbance torques acting on it. 
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ii. Telemetry, tracking and command (TT&C) / communication (COMM)  

provides the interface between the spacecraft and ground station systems which receive, 

process, and transmit data signals downlink and uplink. 

iii. Command and data handling (C&DH) is the „brain‟ of the whole autonomous 

satellite which control and monitors the overall operation system of the satellite using 

on-board computer (OBC). 

iv. Electrical power subsystem (EPS) provides, stores, distributes, and controls 

satellite electrical power required to operate all electronic devices of a satellite during 

the mission. 

Among many function of subsystems, ADCS is a mission-critical real-time 

embedded system and as such receives considerable care to ensure reliable operation in 

space (Wertz, 1978). Generally, ADCS is decomposed into several components 

including the spacecraft dynamics itself, the attitude determination system (ADS) which 

consisting of sensors and attitude estimation algorithm, and attitude control system 

(ACS) which include the control algorithm and actuators.  The general structure of 

ADCS is shown in Figure 1.1. In general, the satellite‟s attitude is measured using 

sensors. However, since most of the sensors are inherent with noises such as random 

noise and bias noise, hence the filtering algorithm is required to provide the best 

estimation of the current attitude in spite of the noise presence in the measurements. 

Subsequently, the estimated attitude will be fed back into the control algorithm, in 

which the control algorithm will send the desired command to the actuators, as the 

actuators provide the required forces or torques to control the satellite‟s attitude into the 

desired attitude. 
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Figure 1.1: General structure of a satellite‟s Attitude Determination and Control 

Subsystem (ADCS). 

Attitude determination is one of the important processes in ADCS that ensuring 

the success of a satellite mission. It is a process to determine the current attitude of the 

satellite to be fed back into the controller for attitude control purpose. In general there 

are two approaches in determining the satellite attitude which are deterministic 

approach and recursive estimation approach. Deterministic approach is an approach 

where the attitude is found based on two or more vector observations from a single 

point at a time. Meanwhile, recursive approach is an estimator that utilizes dynamics 

and/or kinematics models and subsequently can estimate the attitude of a spacecraft 

using a time series of measurements from one or more vector observations. 

The advantages of deterministic approach are the attitude of the satellite can be 

estimated using measurements of more than two vectors and efficient for on-board 

implementation. However the deterministic approach fails when only one set of vector 

measurements is available. The unavailability of some other sensor measurements could 

be due to faulty sensor or deliberately designed for sensor reduction which indirectly 

reduces the hardware complexity and production cost of a satellite. Hence the recursive 
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estimation approach is very important as a backup or alternative system to determine the 

attitude in such condition problem. As summary, the background of this research work 

is depicted in the following figure. 

 

Figure 1.2: Summary of research background. 

1.2  Motivation and Problem Statement 

In common practice of ADS, the satellite‟s attitude and angular velocity 

information is obtained through deterministic approach by using attitude sensor and 

gyroscope respectively as depicts in Figure 1.3.  However, gyroscopes are generally 

expensive and are often prone to degradation or failure. Hence this research is intended 

to study the satellite‟s attitude determination system without gyroscope or so called 

gyroless problem using recursive state estimation algorithms as shown in Figure 1.4, 

which can be an alternative or backup system during unavailable satellite‟s angular 

velocity data. In Figure 1.3 and Figure 1.4,   and   are respectively represent the 
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angular velocity and attitude parameter, while ( )̃ and ( )̂ are their respective 

measurement and estimated states. 

 

Figure 1.3: Block diagram of common ADS.  

 

 

Figure 1.4: Block diagram of gyroless ADS.  

Hence by having real telemetry data of RazakSAT, one of the Malaysian 

satellites, it is the intention of this research to study and investigate the satellite attitude 

estimation during gyroless circumstances. 

In state estimation problem, two important elements are involved which are 

dynamics model and estimation algorithm. From the literature, the most popular 

kinematics equation model to represent the attitude parameter is quaternion kinematics 

model. However, quaternion representation contains one redundant parameter in its four 

dimensional lead to no clear physical interpretation. Hence, in this thesis we will derive 

the dynamics model for RazakSAT by using the kinematics equation of Euler angles 

parameter due to its straightforward physical interpretation for observability analysis 

rather than quaternion which cannot provide direct interpretation for observability 

analysis. 
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Meanwhile, the most commonly used estimation algorithm in satellite attitude 

estimation during gyroless condition whether in real practice or theoritically is the 

extended Kalman filter (EKF). Nevertheless, it is known that EKF algorithm strictly 

assumed that the nature of the noise or errors in the system is Gaussian white noise. Yet, 

in real world this is not always true.  In practice, this could be due to geomagnetic field 

measurement as been reported in TechSAT real data, where double-peaked distribution 

of the geomagnetic field measurement by three-axis magnetometer data was observed 

(Oshman & Carmi, 2006). Errors due to multipath effects (Zhou, Yang, Zhang, & 

Edwan, 2011) and gravitational field fluctuations generated during warm inflation also 

may lead to the non-Gaussian distributed noise (Gupta, Berera, Heavens, & Matarrese, 

2002).   Hence in this work, we will analyze and investigate the Gaussianity and 

whiteness of noise in RazakSAT data for estimation process.  

However, there is an estimation approach that does not require the assumption of 

a specific noise as EKF which is particle filter (PF). Since the seminal paper (Gordon, 

Salmond, & Smith, 1993), PF has become one of the most popular methods for 

stochastic estimation problems, and some authors believe and claim that beyond the 

EKF is the PF (Ristic, Arulampalam, & Gordon, 2004). The popularity is due to the 

advantage of PF algorithm that does not strictly assume the Gaussian white noise in the 

system as EKF, which will lead to less accurate estimation if the assumption is 

incorrect. In this thesis, we will study the state estimation for gyroless RazakSAT  by 

using PF algorithm which will be compared with EKF, the most commonly used 

algorithm in spacecraft community.  
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