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ABSTRACT

This work is to solve an infinite 2-system model of first order ordinary differential equations. The
system is in Hilbert space l2 with the coefficients are any positive real numbers. The system is
rewritten as a system in the form of matrix equations and it is first studied in ℝ2 where its solution
is obtained and a fundamental matrix is constructed. The results are carried out to solve the infinite
2-system in Hilbert space l2. The control functions satisfy integral constraint and are elements of
the space of square integrable function in l2. The existence and uniqueness of the solution of the
system in Hilbert space l2 on an interval time [0,T] for a sufficiently large T is then proven.
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1 INTRODUCTION

Parabolic and hyperbolic partial differential equations are used to describe control problems that are related
to some problems in economy, engineering, defence industry etc. In mathematics, some control problems
described by partial differential equations could be reduced to an infinite system of ordinary differential
equation by using decomposition method (see for instance, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]
and [12]).

In [10] for example, the following parabolic equation was considered:

zt = Az − u + v, z|t=0 = z0(x), z|ST = 0,

where

Az =
n

∑
i,j=1

𝜕
𝜕xi

(aij(x)zxj),

satisfies the following inequality:
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n

∑
i,j=1

aij(x)𝜉i𝜉j ≥ 𝛾
n

∑
i=1

𝜉2i .

The game system was proven to have a unique solution z = z(x, t) in the form of

z(x, t) =
∞
∑
i=1

zi(t)𝜓i(x),

which is also the solution for the following infinite system of differential equations:

̇zi = 𝜆izi − ui(t) + vi(t), zi(0) = zi0, i = 1, 2,… . (1)

The work by [10] above, illustrates the importance of studying infinite system of ordinary differential equa-
tion, as it has a strong relationship with parabolic or hyperbolic differential equation. However, the infinite
system can be studied independently from the problem of partial differential equations as shown in [13],
[14], [15], [16] and [17].

In [13] for example, an infinite system of ordinary differential equations was described as follows,

̇xk = −𝛼kxk − 𝛽kyk + w1k, xk(0) = xk0
̇yk = 𝛽kxk − 𝛼kyk + w2k, yk(0) = yk0

(2)

where 𝛼k is a positive real number and 𝛽k is any real number for k = 1, 2, ..... The system is in Hilbert space
l2 and it was shown that there exists a unique solution for the system in the space.

The problem of countable number of first-order differential equations with function coefficients was later
studied in [14], in which, the existence-uniqueness theorem of solution to the model in Hilbert space l2 was
proved.

The study of such infinite system was then extended to an infinite first order 2-systems of differential equa-
tions as can be seen in [18]. In the article, the system studied was described as follows:

̇̇xk = −𝛼kxk − 𝛽kyk + w1k, xk(0) = xk0, ̇xk(0) = xk1
̇̇yk = 𝛽kxk − 𝛼kyk + w2k, ̇yk(0) = yk1

(3)

where 𝛼k, 𝛽k are real numbers for k = 1, 2, ..... The system is in Hilbert space lr+1
2 and it was shown that

the solution of the system exists and is unique in the space.

88



Applied Mathematics and Computational Intelligence
Volume 12, No. 1, Apr 2023 [87 – 100]

The results obtained in studying the existence and uniqueness of solution in such system were used in the
study of optimal control and differential games problems described by the systems in the space considered.

For example, in [16], a pursuit differential game for an infinite first order 2-systems of differential equations
in Hilbert space l2 was studied. The result from this work was a formula for guaranteed pursuit time, which
occur when the state of the system coincides with the origin. An explicit pursuer strategy was constructed,
where the control of players were constrained by geometric constraints.

Further work of infinite system can also be found in [17]. The work was about a linear pursuit differential
game of geometric constraint described by an infinite system of first-order differential equations. The state
of the system was to be brought by the pursuer, from a given initial state, to the origin in a finite time.
However, the evader tried to avoid this to happen. A strategy for the pursuer was constructed where the
guaranteed pursuit time was obtained. On the other hand, a formula of guaranteed evasion time was also
obtained in the evasion part of the game.

This independent study continues to be carried out in the present work where the space of the game is
Hilbert space l2, which is a complete linear vector space of any sequences of real numbers as stated below:

l2 = {𝛼 = (𝛼1, 𝛼2,… , 𝛼n,…)|𝛼n ∈ ℝ,
∞
∑
n=1

𝛼2n < ∞}

with the following inner product and norm defined by :

⟨𝛼, 𝛽⟩ =
∞
∑
n=1

𝛼n𝛽n and ‖𝛼‖ = √(𝛼, 𝛼) for 𝛼, 𝛽 ∈ l2.

In addition, the control function w is an element of L(0,T; l2), which is the space of square integrable
function in l2 on the time interval [0,T] for a sufficiently large T.

In this work, an infinite first order 2-systems of differential equations is studied by proving the existence
and uniqueness of the solution of the system. The process is carried out by using an obtained fundamental
matrix.

2 PROBLEM STATEMENT

The game system of this project is described by the following infinite 2-system of first order ordinary
differential equation:
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̇xi = −𝜆ixi + yi + wi1,
̇yi = −𝜆iyi + wi2, i = 1, 2,… (4)

xi(0) = xi0, yi(0) = yi0,

where 𝜆i is a positive scalar function and x0 = (x10, x20,…), y0 = (y10, y20,…), xi = (x1i, x2i,…), yi =
(y1i, y2i,…), ̇xi = ( ̇x1i, ̇x2i,…), ẏi = (ẏ1i, ẏ2i,…) are all elements in l2. In addition, the control function is
the function w ∶ [0,T] → l2 such that w(t) = (w1(t),w2(t),…), with measurable coordinates wi(t) =
(wi1(t),wi2(t)), 0 ≤ t ≤ T, satisfying the condition

∞
∑
i=1

∫
T

0

(w2
i1(t) + w2

i2(t))dt ≤ 𝜌20 (5)

for a given positive number 𝜌0. The purpose is to prove the existence and the uniqueness of the solution of
the system (4) in Hilbert space l2 . In other words, we prove that the solution exists and belongs to the space
C(0,T; l2), which is the space of continous function in l2 on time interval [0,T] for a sufficiently large T.

3 PRELIMINARY RESULTS

3.1 Solution for a 2-system of differential equation in ℝ2

A general solution of a 2-system differential equations is first to be obtained in the space of ℝ2. The method
is later extended to the system in Hilbert space l2. The scalar function in the system could be any positive
real number and the system is as follows:

̇x = −𝜆x + y + w1,
̇y = −𝜆y + w2, (6)

x(0) = x0, y(0) = y0,

where 𝜆 is a positive scalar function and x0, y0, x, y, ̇x, ẏ,w1,w2 ∈ ℝ.

To obtain the solution z = (x, y) ∈ ℝ2 of the system, (6) is rewritten into a matrix equation as follows:

̇
[x
y
] = [ ̇x

̇y] = [−𝜆 1
0 −𝜆] [

x
y
] + [w1

w2
] , [x(0)

y(0)] = [x0
y0
] . (7)

From (7), let z = [x
y
] , C = [−𝜆 1

0 −𝜆] and w = [w1

w2
]. Then (6) becomes the following ordinary differential

equation (ODE) in ℝ2:
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̇z = Cz + w

z(0) = z0
(8)

where C is a scalar function and z0, z, ̇z,w ∈ ℝ2. By straight forward calculation, the solution of (8) is

z(t) = eCt(z0 + ∫
t

0

e−sCw(s)ds). (9)

3.2 Fundamental Matrix

We are now obtaining our fundamental matrix eCt which appear in equation (9). The fundamental matrix
will later be used in the infinite system in Hilbert space l2.

Lemma 3.2.1. Let 𝜆 be a positive scalar function, C = [−𝜆 1
0 −𝜆] and t ∈ [0,T]. Then eCt = e−𝜆t [1 t

0 1
].

Proof.

eCt = I + Ct
1! +

C2t2

2! + ⋯ + Cntn

n! + …

= I +
[−𝜆 1
0 −𝜆] t

1! +
[−𝜆 1
0 −𝜆]

2

t2

2! + ⋯ +
[−𝜆 1
0 −𝜆]

n

tn

n! + …

= [1 0
0 1

] + [−𝜆t t
0 −𝜆t] + [

𝜆2t2

2!
−𝜆t2

1!
0

𝜆2t2

2!

] +⋯+ [
−𝜆ntn

n!
𝜆(n−1)tn

(n−1)!
0

−𝜆ntn

n!

] +…

= [
∑∞

n=0
(−𝜆t)n

n!
t∑∞

n=0
(−𝜆t)n

n!
0 ∑∞

n=0
(−𝜆t)n

n!

]

= [e
−𝜆t te−𝜆t

0 e−𝜆t
]

= e−𝜆t [1 t
0 1

] .

The following are a few properties of the fundamental matrix.

Lemma 3.2.2. Some Properties of the Fundamental Matrix

Let A(t) = eCt = e−𝜆t [1 t
0 1

] for 𝜆 > 0 and h, t ∈ [0,T]. Then the matrix A has the following properties:
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1. A(t + h) = A(t)A(h) = A(h)A(t) = A(h + t)

2. |A(t)z| = |AT(t)z| < e−𝜆t√t2 + 2|z|

3. ||A(t) − I2|| < T + 3 for t ∈ [0,T]

Proof.

1.

A(t + h) = e−𝜆(t+h) [1 t + h
0 1

]

= e−𝜆te−𝜆h [1 t
0 1

] [1 h
0 1

]

= e−𝜆t [1 t
0 1

] e−𝜆h [1 h
0 1

]

= A(t)A(h)
= A(h)A(t)

= e−𝜆h [1 h
0 1

] e−𝜆t [1 t
0 1

]

= e−𝜆he−𝜆t [1 h
0 1

] [1 t
0 1

]

= e−𝜆(h+t) [1 h + t
0 1

]

= A(h + t).

2.

A(t)z = e−𝜆t [1 t
0 1

] [x
y
]

= e−𝜆t [x + ty
y

] .

This implies,

92

----



Applied Mathematics and Computational Intelligence
Volume 12, No. 1, Apr 2023 [87 – 100]

|A(t)z| = e−𝜆t√(x + ty)2 + y2

= e−𝜆t√x2 + 2txy + (t2 + 1)y2

≤ e−𝜆t√x2 + (t2x2 + y2) + (t2 + 1)y2

= e−𝜆t√x2(1 + t2) + y2(t2 + 2)

< e−𝜆t√(t2 + 2)(x2 + y2)

= e−𝜆t√t2 + 2|z|.

3.

‖A(t) − I2‖ ≤ ‖A(t)‖ + ‖I2‖
= max

|d|=1
|A(t)d| + 1 for any vector d of which its norm vector |d| = 1

< max
|d|=1

(e−𝜆t√t2 + 2|d|) + 1

≤ e−𝜆t√t2 + 2 + 1

< 1 +√t2 + 2

≤ 1 +√t2 +√2
= 1 + t +√2
< t + 3

≤ T + 3

4 MAIN RESULT

As described in the previous section, the game system (4) is rewritten in a similar fashion as follows:

̇zi = Cizi + wi, i = 1, 2,…
zi(0) = zi0,

(10)

where zi(t) = (xi(t), yi(t)) and Ci = [−𝜆i 1
0 −𝜆i

], 𝜆i > 0 with the function w(t) = (w1(t),w2(t),…) such

that wi(t) = (wi1(t),wi2(t)) be an admissible control function, that is, it satisfies (5).
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The idea is that, the existence and uniqueness of solution of (10) in l2 will imply the existence and unique-
ness of solution of (4) in l2, both on the time interval [0,T].

Definition 4.1. A function z(t) = (z1(t), z2(t),…), 0 ≤ t ≤ T where T is a given positive number, is called
the solution of the system (10) if each coordinate zi of z,

1. is continuous and differentiable on (0,T) and satisfies the initial condition zi(0) = z0i ,

2. has the first derivative ̇zi(t) on (0,T) and satisfies the system (10) almost everywhere on (0,T), where

Ci = [−𝜆i 1
0 −𝜆i

] , zi = (xi, yi) and wi = (wi1,wi2) be the control parameter.

Theorem 4.1. If z = (z1, z2,…), z0 = (z10, z20,…), ̇z = ( ̇z1, ̇z2,…) ∈ l2 and w(t) = (w1(t),w2(t),…) ∈
L2(0,T; l2) for 0 ≤ t ≤ T where wi(t) = (wi1(t),wi2(t),…) be an admissible control function, then the
game system (10) has a unique solution z(t) = (z1(t), z2(t),…) in Hilbert space l2 where 0 ≤ t ≤ T for any
given T > 0.

Proof.
The proof begin by proving the existence of solution in l2, followed by proving the solution function is
continuous on the time interval [0,T], which implies its uniqueness (Theorem 2.2.1 : [19]).

The Existence

Note that our fundamental matrix is Ai(t) = eCit. By referring to the solution for the system (6) which is
(9), we derive that:

zi(t) = Ai(t)(zi0 + ∫
t

0

Ai(−s)wi(s)ds)

= Ai(t)zi0 + ∫
t

0

Ai(t − s)wi(s)ds.

Now, by using Lemma 3.2.2, Cauchy Schwartz Inequality, 𝜆i > 0 for each i = 1, 2,… , k, and the inequality
(a + b)2 ≤ 2(a2 + b2) for any real number a and b, we have

|zi(t)|2 ≤ 2|Ai(t)zi0|2 + 2
|
|
|
∫
t

0

Ai(t − s)wi(s)ds
|
|
|

2

< 2(e−𝜆it√t2 + 2|zi0|)
2 + 2( ∫

t

0

e−𝜆i(t−s)√(t − s)2 + 2|wi(s)|ds)
2
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≤ 2e−2𝜆it(t2 + 2)|zi0|2 + 2∫
t

0

e−2𝜆i(t−s)((t − s)2 + 2)ds∫
t

0

|wi(s)|2ds

≤ 2(t2 + 2)|zi0|2 + 2∫
t

0

((t − s)2 + 2)ds∫
t

0

|wi(s)|2ds

≤ 2(t2 + 2)|zi0|2 + 2∫
t

0

(t2 + 2)ds∫
t

0

|wi(s)|2ds

= 2(t2 + 2)|zi0|2 + 2t(t2 + 2) ∫
t

0

|wi(s)|2ds.

Thus,

∞
∑
i=1
|zi(t)|2 ≤

∞
∑
i=1

2(t2 + 2)|zi0|2 +
∞
∑
i=1

2t(t2 + 2) ∫
t

0

|wi(s)|2ds

= 2(t2 + 2)(
∞
∑
i=1
|zi0|2 + t

∞
∑
i=1

∫
t

0

|wi(s)|2ds)

≤ 2(t2 + 2)(
∞
∑
i=1
|zi0|

2 + T
∞
∑
i=1

∫
T

0

|wi(s)|2ds)

= 2(t2 + 2)(‖z0‖
2
l2
+ T‖w(⋅)‖2L2(0,T;l2))

< ∞

since z0 ∈ l2 and w(⋅) ∈ L2(0,T; l2). We conclude that z(t) ∈ l2 for t ∈ [0,T].

The continuity on [0,T]

Next, we need to show that z(t) is continuous, that is, for any 𝜀 > 0, ∃𝛿 > 0 such that ‖z(t+h)− z(t)‖2l2 < 𝜀
whenever |h| < 𝛿.

Proof.
For h > 0 ∶

zi(t + h) − zi(t) = Ai(t + h)zi0 + ∫
t+h

0

Ai(t + h − s)wi(s)ds − (Ai(t)zi0 + ∫
t

0

Ai(t − s)wi(s)ds)

= (Ai(t)Ai(h))zi0 + ∫
t

0

Ai(t + h − s)wi(s)ds + ∫
t+h

t

Ai(t + h − s)wi(s)ds
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− Ai(t)zi0 − ∫
t

0

Ai(t − s)wi(s)ds

= (Ai(t)Ai(h) − Ai(t))zi0 + ∫
t

0

Ai(t + h − s)wi(s)ds − ∫
t

0

Ai(t − s)wi(s)ds + ∫
t+h

t

Ai(t + h − s)wi(s)ds

= (Ai(h) − I2)Ai(t)zi0 + ∫
t

0

Ai(t + h − s)wi(s)ds − ∫
t

0

Ai(t − s)wi(s)ds + ∫
t+h

t

Ai(t + h − s)wi(s)ds

= (Ai(h) − I2)Ai(t)zi0 + ∫
t

0

Ai(h)Ai(t − s)wi(s)ds − ∫
t

0

Ai(t − s)wi(s)ds + ∫
t+h

t

Ai(t + h − s)wi(s)ds

= (Ai(h) − I2)Ai(t)zi0 + ∫
t

0

(Ai(h) − I2)Ai(t − s)wi(s)ds + ∫
t+h

t

Ai(t + h − s)wi(s)ds.

Now,

|zi(t + h) − zi(t)|2 ≤ 3|(Ai(h) − I2)Ai(t)zi0|2 + 3
|
|
|
∫
t

0

(Ai(h) − I2)Ai(t − s)wi(s)ds
|
|
|

2

+ 3
||||
∫
t+h

t

Ai(t + h − s)wi(s)ds
||||

2

= 3‖Ai(h) − I2‖2|Ai(t)zi0|2 + 3‖Ai(h) − I2‖2
|
|
|
∫
t

0

Ai(t − s)wi(s)ds
|
|
|

2

+ 3
||||
∫
t+h

t

Ai(t + h − s)wi(s)ds
||||

2

≤ 3‖Ai(h) − I2‖2|Ai(t)zi0|2 + 3‖Ai(h) − I2‖2 ∫
t

0

1ds∫
t

0

|Ai(t − s)wi(s)|2ds

+ 3∫
t+h

t

1ds∫
t+h

t

|Ai(t + h − s)wi(s)|
2ds

≤ 3‖Ai(h) − I2‖2e−2𝜆it(t2 + 2)|zi0|2 + 3‖Ai(h) − I2‖2t∫
t

0

(e−𝜆i(t−s)√t2 + 2|wi(s)|)
2
ds

+ 3h∫
t+h

t

(e−𝜆i(t+h−s)√(t + h − s)2 + 2|wi(s)|)
2
ds

≤ 3‖Ai(h) − I2‖2(t2 + 2)|zi0|2 + 3‖Ai(h) − I2‖2t∫
t

0

(√t2 + 2|wi(s)|)
2
ds

+ 3h∫
t+h

t

(√(t + h − s)2 + 2|wi(s)|)
2
ds

≤ 3‖Ai(h) − I2‖2(t2 + 2)[|zi0|2 + t∫
t

0

|wi(s)|2ds] + 3h((t + h)2 + 2) ∫
t+h

t

|wi(s)|2ds.
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Then,

∞
∑
i=1
|zi(t+h)−zi(t)|2 ≤

∞
∑
i=1

(3‖Ai(h)− I2‖2(t2+2)[|zi0|2+t∫
t

0

|wi(s)|2ds]+3h((t+h)2+2) ∫
t+h

t

|wi(s)|2ds).

Now let

P1 =
N

∑
i=1

3‖Ai(h) − I2‖2(t2 + 2)[|zi0|2 + t∫
t

0

|wi(s)|2ds],

P2 =
∞
∑

i=N+1
3‖Ai(h) − I2‖2(t2 + 2)[|zi0|2 + t∫

t

0

|wi(s)|2ds] and

P3 =
∞
∑
i=1

3h((t + h)2 + 2) ∫
t+h

t

|wi(s)|2ds.

Hence

‖z(t + h) − z(t)‖2 =
∞
∑
i=1
|zi(t + h) − zi(t)|2

≤ P1 + P2 + P3.

Now for

P1 =
N

∑
i=1

3‖Ai(h) − I2‖2(t2 + 2)[|zi0|2 + t∫
t

0

|wi(s)|2ds],

as h → 0, Ai(h) → Ai(0) = I2. Thus, as h → 0 we have ‖Ai(h) − I2‖ → 0 for each i. Hence for any 𝜀 > 0,
choose 𝛿1 such that P1 <

𝜀
3

whenever |h − 0| = |h| < 𝛿1 as the summation in P1 consists of finite number
of summands. Also, for

P2 =
∞
∑

i=N+1
3‖Ai(h) − I2‖2(t2 + 2)[|zi0|2 + t∫

t

0

|wi(s)|2ds],

both ∑∞
i=1|zi0|2 and ∑∞

i=N+1|zi0|2 → 0 as N → ∞, since z0 ∈ l2. Furthermore, w ∈ L(0,T; l2) implies that
∑∞

i=1 ∫
t
0|wi(s)|2 is convergent. Thus, for any 𝜀 > 0, choose N such that P2 <

𝜀
3
. Now,
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P3 =
∞
∑
i=1

3h((t + h)2 + 2) ∫
t+h

t

|wi(s)|2ds

≤ 3h((t + h)2 + 2)
∞
∑
i=1

∫
T

0

|wi(s)|2ds

≤ 3h((t + h)2 + 2)𝜌20

where 𝜌20 is the initial energy.

As i →∞, for any 𝜀 > 0, choose 𝛿2 such that P3 <
𝜀
3

whenever |h − 0| = |h| < 𝛿2.

Finally, for each 𝜀 > 0, suppose 0 < h < 𝛿 = min{𝛿1, 𝛿2} and i = N such that P1 <
𝜀
3
, P2 <

𝜀
3

and P3 <
𝜀
3
,

Then,

‖z(t + h) − z(t)‖2l2 =
∞
∑
i=1
|zi(t + h) − zi(t)|2

< 𝜀
3
+ 𝜀
3
+ 𝜀
3

= 𝜀.

Similarly, for any 𝜀 > 0, there exists 𝛿 > 0 ∋ ‖z(t) − z(t − h)‖2l2 < 𝜀 whenever h = |h| < 𝛿, where h > 0.
Thus, we conclude that the function z(t) is continuous on [0,T] in Hilbert space l2.

5 CONCLUSION

An infinite 2-system model of first order ordinary differential equation in Hilbert space l2 is solved by
proving that the solution exist in l2 and continous on the time interval [0,T], where T is a given positive
number. The built model is based on a matrix equation to simplify the problem, and has coefficients of any
real number. The work could be used to describe a control or differential game problem.

ACKNOWLEDGEMENT

The present research was fully supported by the National Fundamental Research Grant Scheme FRGS of
the Ministry of Higher Education Malaysia, FRGS/1/2020/STG06/UPM/02/2.

REFERENCES

[1] S. Avdonin and S. Ivanov, “The method of moments in controllability problems, for distributed
parameter systems,” 1995.

98

□ 

□ 



Applied Mathematics and Computational Intelligence
Volume 12, No. 1, Apr 2023 [87 – 100]

[2] E. Axelband, “A solution to the optimal pursuit problem for distributed parameter systems,” Journal
of Computer and System Sciences, vol. 1, pp. 261–286, 1967.

[3] A. G. Butkovsky, Distributed Control Systems. Elsevier Publishing Company, 1969, no. 11.

[4] F. Chernous’ ko, “Bounded controls in distributed-parameter systems,” Journal of Applied Mathe-
matics and Mechanics, vol. 56, pp. 707–723, 1992.

[5] A. V. Fursikov, “Optimal control of distributed systems: Theory and applications translations of
math,” vol. 187, 2000.

[6] G. Ibragimov, “A problem of optimal pursuit in systems with distributed parameters,” Journal of
applied mathematics and mechanics, vol. 66, pp. 719–724, 2002.

[7] ——, “The optimal pursuit problem reduced to an infinite system of differential equations,” Journal
of Applied Mathematics and Mechanics, vol. 77, pp. 470–476, 2013.

[8] D. L. Russell, “Controllability and stabilizability theory for linear partial differential equations: re-
cent progress and open questions,” Siam Review, vol. 20, pp. 639–739, 1978.

[9] N. Satimov and M. Tukhtasinov, “On some game problems for first-order controlled evolution equa-
tions.” Differential Equations, vol. 41, 2005.

[10] N. Y. Satimov and M. Tukhtasinov, “Game problems on a fixed interval in controlled first-order
evolution equations,” Mathematical notes, vol. 80, pp. 578–589, 2006.

[11] M. Tukhtasinov, “Some problems in the theory of differential pursuit games in systems with dis-
tributed parameters,” Journal of Applied Mathematics and Mechanics, vol. 59, pp. 935–940, 1995.

[12] M. Tukhtasinov and M. S. Mamatov, “On pursuit problems in controlled distributed systems,” Math-
ematical notes, vol. 84, pp. 256–262, 2008.

[13] G. Ibragimov, A. Azamov, and R. Hasim, “Existence and uniqueness of the solution for an infi-
nite system of differential equations,” Journal KALAM, International Journal of Mathematics and
Statistics, vol. 1, pp. 9–14, 2008.

[14] G. Ibragimov and B. J. Abbas, “On existence-uniqueness of solution to countable number of first-
order differential equations in the space l2,” Journal of Applied Sciences Research, vol. 7(12), pp.
1860–1864, 2011.

[15] I. A. Alias, G. Ibragimov, and A. Rakhmanov, “Evasion differential game of infinitely many evaders
from infinitely many pursuers in hilbert space,” Dynamic Games and Applications, vol. 7, pp. 347–
359, 2017.

[16] G. Ibragimov, A. Akhmedov, P. N. Izzati, and N. A. Manaf, “Pursuit differential game described by
infinite first order 2-systems of differential equations,” Malaysian Journal of Mathematical Sciences,
vol. 11, pp. 181–190, 2017.

99



Mohd Yazid et al./Unique Solution of an Infinite 2-System Model of First Order Ordinary Differential ...

[17] G. Ibragimov, M. Ferrara, I. A. Alias, M. Salimi, and N. Ismail, “Pursuit and evasion games for an
infinite system of differential equations,” Bulletin of the Malaysian Mathematical Sciences Society,
vol. 45, pp. 69–81, 2022.

[18] F. A. A. Allahabi, “The existence-uniqueness theorem for a system of differential equations in the
spaces lr2+1,” Malaysian Journal of Mathematical Sciences, vol. 5(1), pp. 111–123, 2011.

[19] V. Lakshmikantham and S. Leela, Differential and integral inequalities: theory and applications:
volume I: ordinary differential equations. Academic Press, 1969.

100


	Introduction
	Problem Statement
	Preliminary Results
	Solution for a 2-system of differential equation in R2
	Fundamental Matrix

	Main Result
	Conclusion

