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ANALISIS AKUSTIK DAN KLASIFIKASI BAGI SUARA PATOLOGIKAL 
DENGAN MENGGUNAKAN PENGELASAN LINEAR DAN TIDAK LINEAR 

 
ABSTRAK 

 
Penyakit vokal dan suara telah meningkat secara mendadak disebabkan keadaan pekerjaan, tabiat sosial 
yang tidak sihat dan penyalahgunaan suara. Penyakit vokal memberi kesan kepada bentuk getaran biasa 
dalam peti suara dan menyebabkan perubahan dalam gelombang suara akustik. Pakar perubatan 
profesional menggunakan teknik yang subjektif untuk memeriksa masalah suara, contohnya, pemeriksaan 
terus kepada pengetar suara dan pemeriksaan kepada pengetar suara menggunakan ‘Laryngoscopy’. 
Teknik tersebut adalah sangat mahal, berisiko, memerlukan masa yang banyak, menyebabkan 
ketidakselesaan kepada pesakit dan memerlukan sumber yang mahal. Analisis akustik bagi gelombang 
suara telah terbukti sebagai alat yang terbaik untuk mengesan penyakit vokal kerana ia adalah salah satu 
alat yang tidak memberikan kesan sampingan dan memberikan satu pemeriksaan yang objektif. Dalam 
penyelidikan ini, satu kaedah tidak-invasif telah dijalankan untuk mengesan penyakit suara melalui analisis 
gelombang suara akustik. Dalam tiga puluh tahun ini, pebagai penyelidikan dan pembangunan telah 
dijalankan dalam bidang pengesanan penyakit suara automatik dalam bentuk analisis percakapan masa 
panjang, analisis percakapan masa pendek, analisis gelombang “Electroglottographic (EGG)”, analisis 
masa- frekuensi, pengesanan pergerakan pengetar suara automatik dari teknik pengimejan dan teknik 
pemprosesan gelombang tidak sekata. Sebahagian besar parameter jangka panjang dihasilkan dari 
frekuensi asas, namun anggaran yang betul bagi frekuensi asas patologi tertentu adalah satu tugas yang 
sukar. Walaubagaimanapun, terdapat kaedah penyelesaian alternatif dengan membangunkan algoritma 
pengekstrakan sifat yang berkesan. Tiga kaedah pengekstrakan ciri- ciri telah dicadang berdasarkan 
kepada perbezaan tenaga domain masa, “Mel Frequency Cepstral Coefficients (MFCC)” digabungkan 
dengan “Singular Value Decomposition (SVD)” dan ciri- ciri paket “wavelet” dan entropi tanpa mengira 
frekuensi asas. Pengasing linear seperti pengasing berdasarkan “Linear Discriminant Analysis (LDA)” dan 
pengasing tak linear seperti pengasing “k- nearest neighbor (k-NN)”, “Multilayer Perceptron (MLP)”, 
“Probabilistic Neural Network (PNN)” dan “General Regression Neural Network (GRNN)” telah dicadangkan 
untuk mengasingkan suara patologikal daripada suara biasa. Dalam penyelidikan ini, tiga pangkalan data 
seperti “Massachusett Eye and Ear Infirmary (MEEI) Voice Disorders database”, “MAPACI Speech 
Pathology database” dan “Dataset- III” (dikumpulkan di Hospital Tengku Fauziah, Kangar, Perlis) telah 
digunakan untuk menguji kelainan algoritma di antara pangkalan-pangkalan data dan di antara 
pengekstrakan ciri- ciri yang telah dicadangkan diuji dalam keadaan kehingaran pada 30dB “signal- to- ratio 
(SNR)”. Dua jenis eksperimen telah dijalankan menggunakan algoritma pengekstrakan ciri- ciri dan 
klasifikasi yang telah dicadangkan. Dalam eksperimen pertama, klasifikasi suara normal dan suara 
patologikal telah disiasat. Dalam eksperimen kedua, pengesanan jenis masalah suara yang specifik telah 
dilakukan melalui masalah klasifikasi bentuk dua kelas. Pelbagai jenis masalah suara telah dipilih seperti 
“AP squeezing”, “Vocal fold edema” dan “vocal fold paralysis” berdasarkan penyelidikan sebelum ini. 
Keputusan eksperimen menjelaskan kaedah yang dicadangkan memberikan ketepatan klasifikasi yang 
memberangsangkan untuk klasifikasi suara biasa dan patologikal di bawah keadaan hingar dan senyap. 
Dalam kes pengesanan masalah tertentu, ciri- ciri paket “wavelet” dan entropi memberikan kesan yang lebih 
baik berbanding dengan ciri- ciri berdasarkan perbezaan tenaga domain masa  dan ciri- ciri berdasarkan 
MFCC dan SVD. Pengukuran prestasi berikut seperti “positive predictivity (PP)”, “specificity (SE)”, dan 
“overall accuracy (AUC)” telah dipertimbangkan untuk menjalankan ujian untuk menguji kehandalan dan 
keefektifan pengasing linear dan bukan linear. Untuk pangkalan data masalah suara MEEI, kadar kejayaan 
pengasing tersebut adalah melebihi 99% untuk pengklasifikasian suara biasa dan patalogikal dan untuk 
pengesanan masalah tertentu, kadar kejayaan terbaik adalah 100% telah diperolehi. Eksperimen ini juga 
telah diulangi untuk “MAPACI speech pathology database” dan “dataset- III” di bawah keadaan hingar dan 
tidak hingar. Keputusan tersebut menunjukkan bahawa ciri- ciri berdasarkan paket wavelet dan entropi 
menghasilkan ketepatan klasifikasi yang lebih baik berbanding dengan ciri- ciri berdasarkan tenaga domain 
masa dan ciri- ciri berdasarkan MFCC dan SVD untuk dua lagi pangkalan data. Kesimpulannya, algoritma 
pengekstrakan ciri- ciri dan pengklasifikasian yang telah dicadangkan boleh diterapkan untuk membantu 
pakar perubatan dalam siasatan awal bagi masalah suara mengikut aliran perubatan.     
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NON-INVASIVE PATHOLOGICAL VOICE CLASSIFICATIONS USING LINEAR 
AND NON-LINEAR CLASSIFIERS 

 

ABSTRACT 

In this research work, a non-invasive method is conducted to diagnose the voice diseases 
through acoustic analysis of voice signal. Three feature extraction methods are proposed based 
on the time-domain energy variations, Mel frequency cepstral coefficients combined with singular 
value decomposition and wavelet packet and entropy features. Linear classifier namely LDA 
based classifier and non-linear classifiers such as k-NN classifier, MLP network, PNN, and GRNN 
are suggested to discriminate pathological voices from normal voices. In this research work, three 
databases such as MEEI voice disorders database, MAPACI Speech Pathology database, and 
dataset-III (collected at Hospital Tuanku Fauziah, Kangar, Perlis) are used to test the 
independence of the algorithms to the databases and the proposed feature extraction algorithms 
are also tested in noisy condition at 30dB signal-to-noise ratio. Two types of experiments are 
conducted using the proposed feature extraction and classification algorithms. In the first 
experiment, classification of normal and pathological voice has been investigated. In the second 
experiment, the detection of the specific type of voice disorders has been carried out through two-
class pattern classification problems. The different kind of voice disorders are selected such as 
AP squeezing, vocal fold edema and vocal fold paralysis based on the previous research works. 
The experiment investigations elucidate that the proposed feature extraction algorithms give very 
promising classification accuracy for the classification of normal and pathological voices under 
controlled and noisy environment. In the case of detection of specific disorders, wavelet packet 
and entropy features perform well compared to time-domain energy variations based features 
and MFCCs and SVD based features. The following performance measures such as positive 
predictivity, specificity, sensitivity, and overall accuracy have been considered, in order to test the 
reliability and effectiveness of the linear and non-linear classifiers. For the MEEI voice disorders 
database, the success rate of the classifiers is above 98% for the classification of normal and 
pathological voices and for the detection of specific disorders the best classification accuracy of 
100% is achieved. The experiments have also been repeated for the MAPACI speech pathology 
database and dataset- III under controlled and noisy environment. The results indicate that the 
wavelet packet and entropy based features provides better classification accuracy compared to 
time-domain energy based features and MFCCs and SVD based features for the two more 
databases. It is concluded that proposed feature extraction and classification algorithms can be 
employed to help the medical professionals for early investigation of voice disorders. 
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CHAPTER 1 

INTRODUCTION 

 
This chapter gives the introduction to the subject of interest, discussion of the 

existing methods of voice disorders diagnosing methods, its drawbacks and also 

the advantages of non-invasive methods. This chapter also deals with the 

objectives of the proposed research and organization of the thesis. 

 
1.1 Preamble 
 
 

The voice can indicate an individual moods, age or illness. The voice can be 

used to attract others, to calm others, to irritate, and to frighten others. In this 

world, people are realizing the importance of voice, only when they got a voice 

problem. Voice problems affect the normal vibration pattern of the glottis. Voice is 

very important for certain professionals like singers, teachers, actors, reporters, 

lawyers, auctioneers, and phone assistants. Vocal fold problems have an impact 

on people’s professional carriers and their quality of life (Krischke et al., 2005; 

Rasch, Günther, Hoppe, Eysholdt, & Rosanowski, 2005).  

 

Voice disorders are due to nature of job, unhealthy social habits and due to 

vocal fatigue after an extensive period of talking. However, the problems may 

become chronic if the voice is abused or overused when vulnerable. During the 

upper respiratory infections, the risk of voice damage is increased (Murry & Rosen, 

2000). Due to the vibration of the vocal folds, the structure of vocal folds become 
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