Show simple item record

dc.contributor.authorMuhammad Zaini, Ahmad, Dr.
dc.contributor.authorMohammad Khatim, Hasan, Assoc. Prof. Dr.
dc.contributor.authorDe Baets, Bernard
dc.date.accessioned2014-03-10T05:04:41Z
dc.date.available2014-03-10T05:04:41Z
dc.date.issued2013-07
dc.identifier.citationInformation Sciences, vol. 236, 2013, pages 156-167en_US
dc.identifier.issn0020-0255
dc.identifier.urihttp://www.sciencedirect.com/science/article/pii/S0020025513001436
dc.identifier.urihttp://dspace.unimap.edu.my:80/dspace/handle/123456789/32479
dc.descriptionLink to publisher's homepage at http://www.elsevier.com/en_US
dc.description.abstractIn this paper, we study analytical and numerical solutions of fuzzy differential equations based on the extension principle. For linear fuzzy differential equations, we state some results on the behaviour of the solutions and study their relationship with the generalised Hukuhara derivative. In order to approximate the solutions of linear and non-linear fuzzy differential equations, we propose a new fuzzification of the classical Euler method and then incorporate an unconstrained optimisation technique. This combination offers a powerful tool to tackle uncertainty in any numerical method. An efficient computational algorithm is also provided to guarantee the convexity of fuzzy solutions on the time domain. Several illustrative examples are given.en_US
dc.language.isoenen_US
dc.publisherElsevier Inc.en_US
dc.subjectDependency problemen_US
dc.subjectFuzzy derivativeen_US
dc.subjectFuzzy differential equationen_US
dc.subjectNumerical methoden_US
dc.titleAnalytical and numerical solutions of fuzzy differential equationsen_US
dc.typeArticleen_US
dc.contributor.urlmzaini@unimap.edu.myen_US
dc.contributor.urlkhatim@ftsm.ukm.myen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record