Application of feed-forward neural networks for classifying acoustics levels in vehicle cabin
Date
2014Author
Ahmad Kadri, Junoh
Zulkifli, Mohd Nopiah
Ahmad Kamal, Ariffin
Metadata
Show full item recordAbstract
Vehicle acoustical comfort and vibration in a passenger car cabin are the main factors that attract a buyer in car purchase. Numerous studies have been carried out by automotive researchers to identify and classify the acoustics level in the vehicle cabin. The objective is to form a special benchmark for acoustics level that may be referred for any acoustics improvement purpose. This study is focused on the sound quality change over the engine speed [rp to recognize the noise pattern experienced in the vehicle cabin. Since it is difficult for a passenger to express, and to evaluate the noise experienced or heard in a numerical scale, a neural network optimization approach is used to classify the acoustics levels into groups of noise annoyance levels. A feed forward neural network technique is applied for classification algorithm, where it can be divided into two phases: Learning Phase and Classification Phase. The developed model is able to classify the acoustics level into numerical scales which are meaningful for evaluation purposes.