• Login
    View Item 
    •   DSpace Home
    • Journal Articles
    • School of Mechatronic Engineering (Articles)
    • View Item
    •   DSpace Home
    • Journal Articles
    • School of Mechatronic Engineering (Articles)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Synthesis of nanoporous carbonated hydroxyapatite using non-ionic pluronics surfactant

    Thumbnail
    View/Open
    Synthesis of nanoporous carbonated hydroxyapatite using non-ionic pluronics surfactant.pdf (38.47Kb)
    Date
    2013
    Author
    Nur Farahiyah, Mohammad
    Fei, Yee Yeoh
    Radzali, Othman, Dr.
    Metadata
    Show full item record
    Abstract
    Hydroxyapatite (HA) is a bioceramics that commonly used as bone substitute materials, coating materials and scaffolds in orthopedics. It is well known for its remarkable biocompatibility with natural human tissue. However, synthetic HA is different from biological apatite whereby apatites contain carbonate ion which is about 3-8wt% of the hard tissues of human body which described as carbonated hydroxyapatite (CHA). Hence, synthetic CHA may have a better bioactivity than HA and more widely used as biomaterials. This study described the synthesis and characterization of nanoporous carbonated hydroxyapatite (CHA) by co-precipitation method through self-organization mechanism with different type of non-ionic surfactants (P123 and F127). Diammonium hydrogen phosphate, (NH4)2HPO4 and calcium nitrate tetrahydrate, Ca (NO3)2·4H2O were used as starting materials for preparing the precursor for CHA powder. The ammonium carbonate, NH4HCO3 was used as the main source for carbonate ion. Synthesized powders were characterized using XRD, EDS, FESEM, TEM, and FTIR. From the XRD result, pure HA phase was obtained for all samples. FTIR analysis results obviously showed the substitution of carbonate ion into the apatite and confirm the formation of CHA. The FTIR results also demonstrated that the surfactants had been removed completely through calcination process. SEM image revealed a sphere-like particle shape of CHA was produced after the calcination. The mesoporous CHA with pore size 2-12 nm (F127) and 2-8 nm (P123) was synthesized.
    URI
    http://www.scientific.net/AMR.686.33
    http://dspace.unimap.edu.my:80/dspace/handle/123456789/34495
    Collections
    • Nur Farahiyah Mohammad, Dr. [11]
    • School of Mechatronic Engineering (Articles) [319]

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback
     

     

    Browse

    All of UniMAP Library Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Atmire NV

    Perpustakaan Tuanku Syed Faizuddin Putra (PTSFP) | Send Feedback