Mechanical properties of polyvinyl chloride and polypropylene hybrid polymeric nanocomposites for structural applications
Date
2020-04Author
Sihama, I. Al-Shalchy
Kadhum, M. Shabeeb
Ammar, M. Hasan
Rula, F. Hasan
Metadata
Show full item recordAbstract
In this work, mechanical properties for three types of polymeric blends and polymeric composites were fabricated and evaluated. The first group was prepared from (polyvinyl chloride: polypropylene (PVC: PP)) in different ratios of polypropylene (5, 10 and 15%). The second group was prepared by adding 1% ethylene propylene diene monomer (EPDM) to the first group samples. Similarly, the third group was prepared by adding 1% acrylonitrile-butadiene-styrene (ABS) to the first group samples. All samples were prepared by melt blending technique using a twin-screw extruder. The optimum sample from the three groups was reinforced in different ratios of titanium dioxide (TiO2) nanoparticles. The results of mechanical properties show that the polymer blend (PVC-PP-EPDM) has higher values in compressive strength, flexural modulus, impact strength and fracture toughness, whereas the polymer blend (PVC-PP-ABS) has higher values in flexural strength. The highest compressive strength, flexural modulus, impact strength and fracture toughness were 240 MPa, 2.5 GPa, 69.7 kJ/m2 and 13.2 MPa√m for ternary polymers blend (94%PVC: 5%PP: 1%EPDM), whereas the high value of flexural strength was 78 MPa for ternary polymer blend (94%PVC: 5%PP: 1%ABS). Addition of TiO2 nanoparticles has led to the improvement in mechanical properties of prepared composites. Morphology analysing pointed out that the composites have a homogeneous structure formation, as a result of the high efficiency for each of TiO2 nanoparticles and EPDM in a composite.