Show simple item record

dc.contributor.authorPuteh, Saad
dc.contributor.authorNor Khairah, Jamaludin
dc.contributor.authorNursalasawati, Rusli
dc.contributor.authorAryati, Bakri
dc.contributor.authorSiti Sakira, Kamarudin
dc.date.accessioned2009-08-18T05:03:05Z
dc.date.available2009-08-18T05:03:05Z
dc.date.issued2004
dc.identifier.urihttp://dspace.unimap.edu.my/123456789/6982
dc.description.abstractBack Propagation algorithm(BP) has been popularly used to solve various problems, however it is shrouded with the problems of low convergence and instability. In recent years, improvements have been attempted to overcome the discrepancies aforementioned. In this study, we examine the performance of four enhanced BP algorithms to predict rice yield in MAD A plantation area in Kedah, Malaysia. A midst the four algorithms explored, Conjugate Gradient Descent exhibits the best performance.en_US
dc.language.isoenen_US
dc.publisherUniversiti Malaysia Perlisen_US
dc.subjectBack-Propagation algorithmen_US
dc.subjectQuick Propagationen_US
dc.subjectRice yield predictionen_US
dc.subjectConjugate gradient descenten_US
dc.subjectAlgorithmsen_US
dc.subjectBackpropagation networken_US
dc.subjectBack propagationen_US
dc.titleRice Yield prediction - a comparison between Enchanced Back Propagation Learning Algorithmsen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record